Distributed Multi-Object Tracking under Limited Field of View Sensors
Citation
Source Title
Additional URLs
ISSN
Faculty
School
Funding and Sponsorship
Remarks
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Collection
Abstract
We consider the challenging problem of tracking multiple objects using a distributed network of sensors. In the practical setting of nodes with limited field of views (FoVs), computing power and communication resources, we develop a novel distributed multi-object tracking algorithm. To accomplish this, we first formalise the concept of label consistency, determine a sufficient condition to achieve it and develop a novel label consensus approach that reduces label inconsistency caused by objects' movements from one node's limited FoV to another. Second, we develop a distributed multi-object fusion algorithm that fuses local multi-object state estimates instead of local multi-object densities. This algorithm: i) requires significantly less processing time than multi-object density fusion methods; ii) achieves better tracking accuracy by considering Optimal Sub-Pattern Assignment (OSPA) tracking errors over several scans rather than a single scan; iii) is agnostic to local multi-object tracking techniques, and only requires each node to provide a set of estimated tracks. Thus, it is not necessary to assume that the nodes maintain multi-object densities, and hence the fusion outcomes do not modify local multi-object densities. Numerical experiments demonstrate our proposed solution's real-time computational efficiency and accuracy compared to state-of-the-art solutions in challenging scenarios.
Related items
Showing items related by title, author, creator and subject.
-
Battistelli, G.; Chisci, L.; Fantacci, C.; Farina, A.; Vo, Ba-Ngu (2015)The paper deals with the fusion of multiobject information over a network of heterogeneous and geographically dispersed nodes with sensing, communication and processing capabilities. To exploit the benefits of sensor ...
-
Papi, Francesco; Ba-Ngu, V.; Ba-Tuong, V.; Fantacci, C.; Beard, M. (2015)In multi-object inference, the multi-object probability density captures the uncertainty in the number and the states of the objects as well as the statistical dependence between the objects. Exact computation of the ...
-
Mallick, M.; Rubin, S.; Vo, Ba-Ngu (2013)Space object (satellite or space-debris) tracking (SOT) has not received much attention in the Information Fusion community, although the first Fusion conference was held in 1998. A special session on SOT was organized ...