Image analysis algorithms for immunohistochemical assessment of cell death events and fibrosis in tissue sections
Access Status
Authors
Date
2009Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Cell death is of broad physiological and pathological importance, making quantification of biochemical events associated with cell demise a high priority for experimental pathology. Fibrosis is a common consequence of tissue injury involving necrotic cell death. Using tissue specimens from experimental mouse models of traumatic brain injury, cardiac fibrosis, and cancer, as well as human tumor specimens assembled in tissue microarray (TMA) format, we undertook computer-assisted quantification of specific immunohistochemical and histological parameters that characterize processes associated with cell death. In this study, we demonstrated the utility of image analysis algorithms for color deconvolution, colocalization, and nuclear morphometry to characterize cell death events in tissue specimens: (a) subjected to immunostaining for detecting cleaved caspase-3, cleaved poly(ADP-ribose)-polymerase, cleaved lamin-A, phosphorylated histone H2AX, and Bcl-2; (b) analyzed by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling assay to detect DNA fragmentation; and (c) evaluated with Masson's trichrome staining. We developed novel algorithm-based scoringmethods and validated themusingTMAs as a high-throughput format. The proposed computer-assisted scoring methods for digital images by brightfield microscopy permit linear quantification of immunohistochemical and histochemical stainings. Examples are provided of digital image analysis performed in automated or semiautomated fashion for successful quantification of molecular events associated with cell death in tissue sections. © The Histochemical Society, Inc.
Related items
Showing items related by title, author, creator and subject.
-
Hackett, Mark; Desouza, M.; Caine, S.; Bewer, B.; Nichol, H.; Paterson, P.; Colbourne, F. (2015)© 2015 American Chemical Society.An intracerebral hemorrhage (ICH) is a devastating stroke that results in high mortality and significant disability in survivors. Unfortunately, the underlying mechanisms of this injury ...
-
Pushie, M.; Crawford, A.; Sylvain, N.; Hou, H.; Hackett, Mark; George, G.; Kelly, M. (2018)Stroke exacts a heavy financial and economic burden, is a leading cause of death, and is the leading cause of long-term disability in those who survive. The penumbra surrounds the ischemic core of the stroke lesion and ...
-
Hackett, Mark; Ashley Hollings; Caine, S.; Bewer, B.; Alaverdashvili, M.; Takechi, Ryu; Mamo, John; Jones, M.; de Jonge, M.; Paterson, P.; Pickering, I.; George, G. (2018)A unique combination of sensitivity, resolution, and penetration make X-ray fluorescence imaging (XFI) ideally suited to investigate trace elemental distributions in the biological context. XFI has gained widespread use ...