Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Amorphous Al1-xTix, Al1-xVx, and Al1-xFex phases in the hydrogen cycled TiCl3, VCl3 and FeCl3 enhanced NaAlH4 systems

    Access Status
    Fulltext not available
    Authors
    Pitt, M.
    Vullum, P.
    Sørby, M.
    Emerich, H.
    Paskevicius, Mark
    Buckley, Craig
    Gray, E.
    Walmsley, J.
    Holmestad, R.
    Hauback, B.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Pitt, M. and Vullum, P. and Sørby, M. and Emerich, H. and Paskevicius, M. and Buckley, C. and Gray, E. et al. 2012. Amorphous Al1-xTix, Al1-xVx, and Al1-xFex phases in the hydrogen cycled TiCl3, VCl3 and FeCl3 enhanced NaAlH4 systems. Journal of Alloys and Compounds. 521: pp. 112-120.
    Source Title
    Journal of Alloys and Compounds
    DOI
    10.1016/j.jallcom.2012.01.062
    ISSN
    0925-8388
    School
    Department of Physics and Astronomy
    URI
    http://hdl.handle.net/20.500.11937/49728
    Collection
    • Curtin Research Publications
    Abstract

    The twice hydrogen (H) cycled planetary milled (PM) and cryo milled (CM) NaAlH4 + xTMCl3 (transition metal (TM) = Ti, V, Fe) systems (x > 0.1) have been studied by high resolution synchrotron X-ray diffraction, and high resolution transmission electron microscopy (TEM). Intense primary amorphous (a-) Al1−xTMx halos are evident in diffraction data of PM samples for V and Fe, and in CM samples for Ti, V, and Fe. Weaker primary amorphous Al1−xTix halos are evident in PM samples for Ti. The Ti poor a-Al1−xTix phase observed for NaAlH4 + xTiCl3 (x > 0.1) ranges in composition from a-Al86.5Ti13.5 → a-Al92Ti8. High resolution TEM studies of the Al1−xVx phases in the H cycled PM NaAlH4 + 0.1VCl3 system demonstrates that a nanoscopic composite morphology can exist between face centred cubic (fcc) crystalline (c-) Al1−xVx and a-Al1−xVx phases, with the c-Al1−xVx/a-Al1−xVx composite embedded on the NaAlH4 surface. The amorphous Al1−xVx reaches ca. 28 at.% V.

    Related items

    Showing items related by title, author, creator and subject.

    • Functionality of the nanoscopic crystalline Al/amorphous Al50Ti50 surface embedded composite observed in the NaAlH4 + xTiCl3 system after milling
      Pitt, M.; Vullum, P.; Sørby, M.; Sulic, M.; Emerich, H.; Paskevicius, Mark; Buckley, Craig; Walmsley, J.; Holmestad, R.; Hauback, B. (2012)
      The NaAlH4 + xTiCl3 (x < 0.1) system has been studied by a combination of X-ray synchrotron and neutron diffraction, and isotopic H2/D2 scrambling after the completion of the milling process, and the first thermal release ...
    • A structural review of nanoscopic Al1-xTMx phase formation in the TMCln enhanced NaAlH4 system
      Pitt, M.; Vullum, P.; Sørby, M.; Emerich, H.; Paskevicius, Mark; Buckley, Craig; Gray, E.; Walmsley, J.; Holmestad, R.; Hauback, B. (2012)
      The twice hydrogen (H) cycled planetary milled (PM) NaAlH4 + xTMCln (transition metal (TM) = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Pd, Pt; 2 < n < 4) and cryo milled (CM) NaAlH4 + xTMCln (TM = Ti, V, Cr, Fe, Ni; 2 < n < ...
    • Hydrogen absorption kinetics and structural features of NaA1H4 enhanced with transition meal-and Ti-based nanoparticles
      Pitt, M.; Vullum, P.; Sorby, M.; Emerich, H.; Paskevicius, Mark; Webb, C.; Gray, E.; Buckley, Craig; Walmsley, J.; Holmestad, R.; Hauback, B. (2012)
      The hydrogen cycled (H) planetary milled (PM) NaAlH4 + xM (x < 0.1) system (M = 30 nm Ag, 80 nm Al, 2–3 nm C, 30 nm Cr, 25 nm Fe, 30 nm Ni, 25 nm Pd, 65 nm Ti) has been studied by high resolution synchrotron powder X-ray ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.