From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The Ankaratra volcanic field covers an area of ~ 3800 km2 in central Madagascar and comprises of lava flows, lava domes, scoria cones, tuff rings and maars emplaced at different ages (Miocene to Recent). The volcanic products include ultramafic-mafic (olivine-leucite nephelinite, basanite, alkali basalt, hawaiite and tholeiitic basalt), intermediate (mugearite and benmoreite) and felsic rocks (trachyphonolite, quartz trachyte and rhyolite), the latter often peralkaline. The 40Ar/39Ar determinations for mafic lavas yield ages of 17.45 ± 0.12 Ma, 16.63 ± 0.08 Ma and 8.62 ± 0.09 Ma, indicating a prolonged magmatic activity. The mineralogical and geochemical variations suggest that the magmatic evolution of the alkali basalt-hawaiite-mugearite-benmoreite-trachyte series can be accounted for by removal of olivine, feldspars, clinopyroxene, Fe-Ti oxides and accessory phases, producing residual trachytic and trachyphonolitic compositions mineralogically very similar to those of other volcanic areas and tectonic settings. The Ankaratra olivine leucite nephelinites, basanites and tholeiitic basalts do not seem to be associated with significant amounts of evolved comagmatic rocks. The 87Sr/86Sr (0.70504–0.71012), 143Nd/144Nd (0.51259–0.51244) and 206Pb/204Pb (17.705–18.563) isotopic ratios of trachytes and comendite are consistent with open-system processes. However, other trachyphonolites have 143Nd/144Nd (0.51280), 206Pb/204Pb (18.648), 207Pb/204Pb (15.582) and 208Pb/204Pb (38.795) similar to those of mafic rocks, suggesting differentiation processes without appreciable interaction with crustal materials. The Ankaratra volcanism is to be directly linked to a broadly E-W-trending intracontinental extension. A large-scale thermal anomaly, associated with an anomalously hot source region, is not required to explain the Cenozoic magmatism of Madagascar.
Related items
Showing items related by title, author, creator and subject.
-
Lyu, P.; Li, W.; Wang, Xuan-Ce; Pang, C.; Cheng, J.; Li, X. (2017)Abstract It is considered that mantle plumes play an important role in the breakup of supercontinents, but continental rifting and associated bimodal volcanism often predate mantle-plume magmatism and the major stage of ...
-
Cucciniello, C.; Tucker, R.; Jourdan, Fred; Melluso, L.; Morra, V. (2015)The Ampasindava alkaline province consists of a series of circular and elliptical intrusions, lava flows, dyke swarms and plugs of Cenozoic age emplaced into the Mesozoic-Cenozoic sedimentary rocks of the Antsiranana basin ...
-
Huang, Q.; Kamenetsky, V.; Ehrig, K.; McPhie, J.; Kamenetsky, M.; Cross, K.; Meffre, S.; Agangi, Andrea; Chambefort, I.; Direen, N.; Maas, R.; Apukhtina, O. (2016)The felsic-dominant Gawler Range Volcanics and cogenetic Hiltaba Suite granitoids constitute the ca. 1590 Ma Gawler silicic large igneous province in the Gawler Craton, South Australia. The province includes minor occurrences ...