Show simple item record

dc.contributor.authorCucciniello, C.
dc.contributor.authorMelluso, L.
dc.contributor.authorle Roex, A.
dc.contributor.authorJourdan, Fred
dc.contributor.authorMorra, V.
dc.contributor.authorde Gennaro, R.
dc.contributor.authorGrifa, C.
dc.date.accessioned2017-03-15T22:23:34Z
dc.date.available2017-03-15T22:23:34Z
dc.date.created2017-03-08T06:39:36Z
dc.date.issued2017
dc.identifier.citationCucciniello, C. and Melluso, L. and le Roex, A. and Jourdan, F. and Morra, V. and de Gennaro, R. and Grifa, C. 2017. From olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution. Lithos. 274-275: pp. 363-382.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/50288
dc.identifier.doi10.1016/j.lithos.2016.12.026
dc.description.abstract

The Ankaratra volcanic field covers an area of ~ 3800 km2 in central Madagascar and comprises of lava flows, lava domes, scoria cones, tuff rings and maars emplaced at different ages (Miocene to Recent). The volcanic products include ultramafic-mafic (olivine-leucite nephelinite, basanite, alkali basalt, hawaiite and tholeiitic basalt), intermediate (mugearite and benmoreite) and felsic rocks (trachyphonolite, quartz trachyte and rhyolite), the latter often peralkaline. The 40Ar/39Ar determinations for mafic lavas yield ages of 17.45 ± 0.12 Ma, 16.63 ± 0.08 Ma and 8.62 ± 0.09 Ma, indicating a prolonged magmatic activity. The mineralogical and geochemical variations suggest that the magmatic evolution of the alkali basalt-hawaiite-mugearite-benmoreite-trachyte series can be accounted for by removal of olivine, feldspars, clinopyroxene, Fe-Ti oxides and accessory phases, producing residual trachytic and trachyphonolitic compositions mineralogically very similar to those of other volcanic areas and tectonic settings. The Ankaratra olivine leucite nephelinites, basanites and tholeiitic basalts do not seem to be associated with significant amounts of evolved comagmatic rocks. The 87Sr/86Sr (0.70504–0.71012), 143Nd/144Nd (0.51259–0.51244) and 206Pb/204Pb (17.705–18.563) isotopic ratios of trachytes and comendite are consistent with open-system processes. However, other trachyphonolites have 143Nd/144Nd (0.51280), 206Pb/204Pb (18.648), 207Pb/204Pb (15.582) and 208Pb/204Pb (38.795) similar to those of mafic rocks, suggesting differentiation processes without appreciable interaction with crustal materials. The Ankaratra volcanism is to be directly linked to a broadly E-W-trending intracontinental extension. A large-scale thermal anomaly, associated with an anomalously hot source region, is not required to explain the Cenozoic magmatism of Madagascar.

dc.publisherElsevier BV
dc.titleFrom olivine nephelinite, basanite and basalt to peralkaline trachyphonolite and comendite in the Ankaratra volcanic complex, Madagascar: 40Ar/39Ar ages, phase compositions and bulk-rock geochemical and isotopic evolution
dc.typeJournal Article
dcterms.source.volume274-275
dcterms.source.startPage363
dcterms.source.endPage382
dcterms.source.issn0024-4937
dcterms.source.titleLithos
curtin.departmentDepartment of Applied Geology
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record