Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Structural framework of the Lufilian Fold Belt in the Domes region of North Western Province, Zambia from interpretation of geophysical data

    Access Status
    Fulltext not available
    Authors
    Williams, Peter
    Nisbet, B.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Williams, P. and Nisbet, B. 2017. Structural framework of the Lufilian Fold Belt in the Domes region of North Western Province, Zambia from interpretation of geophysical data. Journal of African Earth Sciences. 129: pp. 542-557.
    Source Title
    Journal of African Earth Sciences
    DOI
    10.1016/j.jafrearsci.2017.01.029
    ISSN
    1464-343X
    School
    Department of Exploration Geophysics
    URI
    http://hdl.handle.net/20.500.11937/50346
    Collection
    • Curtin Research Publications
    Abstract

    The area around the Kabompo and Mwombezhi Domes in the North Western Province of Zambia is characterized by poor outcrop, and as is common with other areas in Zambia, correlation of units between isolated outcrops is complicated by the similarity of lithology in many sections of the stratigraphy. Aeromagnetic data, airborne radiometric and electromagnetic data were used to provide control on correlation between outcrops, and therefore allowed interpretation of a robust structural framework. The two domes are Paleoproterozoic basement-cored anticlines unconformably overlain by Neoproterozoic Roan Group rocks of the lower Katangan Supergroup. The Katangan Supergroup was deposited in an extensional basin formed as part of the breakup of the supercontinent Rodinia. From the geophysical interpretation several normal faults are identified that probably formed during this stage of basin formation, and there is good evidence for at least four regional transfer zones having formed at this time. The fault architecture initiated during the Katangan extensional tectonic event is shown in this interpretation to have strongly influenced the geometry of the Lufilian Fold Belt. Evidence in the domes area suggests that salt tectonics may explain the localization of the regional décollement at the top of the Lower Roan, and provide a structural mechanism for the formation of high-pressure metamorphic rocks in the area. Sinistral reverse faulting and associated folding dominates the Lufilian structural fabric in the east of area, and these faults appear to sole out on the regional décollement. Sigmoidal fold profiles have developed between adjacent fault zones, with east-west oriented fold axes in more distal areas rotating into parallelism adjacent to the faults, suggesting synchronous folding and faulting during north-directed compression. In the north-western part of the study area, fold hinge orientations and basement-cover interactions, indicate north north-westerly directed compression. The study demonstrates that interpretation of combined geological and geophysical mapping at a scale suitable for resolving unit correlations, the deformation sequence and local compression directions, is effective at resolving the extensional and compressional structures that now control the Lufilian Fold Belt structural framework.

    Related items

    Showing items related by title, author, creator and subject.

    • U-Pb SHRIMP zircon geochronology and T-t-d history of the Kampa Dome, southern Tibet
      Quigley, M.; Liangjun, Y.; Gregory, Courtney; Corvino, A.; Sandiford, M.; Wilson, C.; Xiaohan, L. (2008)
      Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe ...
    • Neoarchean orogenic, magmatic and hydrothermal events in the Kalgoorlie-Kambalda area, Western Australia: constraints on gold mineralization in the Boulder Lefroy-Golden Mile fault system
      Mueller, A.; Hagemann, S.; McNaughton, Neal (2016)
      The Boulder Lefroy-Golden Mile (BLF-GMF) fault system is the most intensely mineralized structure (>2150 t Au to 2015) in the Archean Yilgarn Craton, Western Australia. The fault system links the Kalgoorlie and Kambalda ...
    • Structural geology and gold mineralisation of the Ora Banda and Zuleika districts, Eastern Goldfields, Western Australia.
      Tripp, Gerard I. (2000)
      Late-Archaean deformation at Ora Banda 69km northwest of Kalgoorlie, Western Australia, resulted in upright folds (D2), ductile shear zones (D3), and a regional-scale brittle-ductile fault network (D4). Early low-angle ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.