Seismic velocity deviation log: An effective method for evaluating spatial distribution of reservoir pore types
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
School
Collection
Abstract
Velocity deviation log (VDL) is a synthetic log used to determine pore types in reservoir rocks based on a combination of the sonic log with neutron-density logs. The current study proposes a two step approach to create a map of porosity and pore types by integrating the results of petrographic studies, well logs and seismic data. In the first step, velocity deviation log was created from the combination of the sonic log with the neutron-density log. The results allowed identifying negative, zero and positive deviations based on the created synthetic velocity log. Negative velocity deviations (below − 500 m/s) indicate connected or interconnected pores and fractures, while positive deviations (above + 500 m/s) are related to isolated pores. Zero deviations in the range of [− 500 m/s, + 500 m/s] are in good agreement with intercrystalline and microporosities. The results of petrographic studies were used to validate the main pore type derived from velocity deviation log. In the next step, velocity deviation log was estimated from seismic data by using a probabilistic neural network model. For this purpose, the inverted acoustic impedance along with the amplitude based seismic attributes were formulated to VDL. The methodology is illustrated by performing a case study from the Hendijan oilfield, northwestern Persian Gulf. The results of this study show that integration of petrographic, well logs and seismic attributes is an instrumental way for understanding the spatial distribution of main reservoir pore types.
Related items
Showing items related by title, author, creator and subject.
-
Kadkhodaie, R.; Kadkhodaie, Ali ; Rezaee, Reza (2021)The Whicher Range field of the Perth Basin includes tight sandstones of the late Permian Willespie Formation with substantial gas reserves. Reservoir properties of these sandstones, in addition to the influence of initial ...
-
Grochau, Marcos Hexsel (2009)Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
-
Bastos de Paula, Osni (2011)This thesis is a multi-scale study of carbonate rocks, from the nanoscale and digital rock investigations to the imaging studies of carbonate reservoir analogues. The essential links between these extremes are the carbonate ...