Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control

    250482.pdf (2.552Mb)
    Access Status
    Open access
    Authors
    Errouissi, R.
    Al-Durra, A.
    Muyeen, S.M.
    Leng, S.
    Blaabjerg, F.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Errouissi, R. and Al-Durra, A. and Muyeen, S. and Leng, S. and Blaabjerg, F. 2017. Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control, in Proceedings of the Transactions on Power Electronics. 32 (3): pp. 2265-2277.
    Source Title
    IEEE Transactions on Power Electronics
    DOI
    10.1109/TPEL.2016.2557964
    ISSN
    0885-8993
    School
    Department of Electrical and Computer Engineering
    Remarks

    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

    URI
    http://hdl.handle.net/20.500.11937/50584
    Collection
    • Curtin Research Publications
    Abstract

    This paper presents a robust continuous-time model predictive direct power control for doubly fed induction generator (DFIG). The proposed approach uses Taylor series expansion to predict the stator current in the synchronous reference frame over a finite time horizon. The predicted stator current is directly used to compute the required rotor voltage in order to minimize the difference between the actual stator currents and their references over the predictive time. However, as the proposed strategy is sensitive to parameter variations and external disturbances, a disturbance observer is embedded into the control loop to remove the steady-state error of the stator current. It turns out that the steady-state and the transient performances can be identified by simple design parameters. In this paper, the reference of the stator current is directly calculated from the desired stator active and reactive powers without encompassing the parameters of the machine itself. Hence, no extra power control loop is required in the control structure to ensure smooth operation of the DFIG. The feasibility of the proposed strategy is verified by the experimental results of the grid-connected DFIG and satisfactory performances are obtained.

    Related items

    Showing items related by title, author, creator and subject.

    • A Subtractive Feedforward Controller Based on Symmetrical Components Decomposition for DFIG Under Balanced and Unbalanced Loads in Weak Grids
      Abu-Hajar, A.; Al-Durra, A.; Muyeen, S.M. (2017)
      © 2016, King Fahd University of Petroleum & Minerals. Supplying unbalanced load by a doubly fed induction generator (DFIG) causes power and torque pulsation due to its unbalanced stator and rotor currents. Researchers ...
    • Improved control of rotor- and load-side converters of stand-alone DFIGs under nonlinear loads conditions
      Wei, F.; Vilathgamuwa, D.; Choi, San Shing; Zhang, X. (2013)
      This paper proposes an improved control of rotor side and load side converters with repetitive control in order to compensate the harmonic components in the stator voltage and current of the doubly-fed induction generator ...
    • Enhanced control of DFIG-based wind power plants to comply with the international grid codes
      Mohseni, Mansour (2011)
      A review of the latest international grid codes shows that large wind power plants are stipulated to not only ride-through various fault conditions, but also exhibit adequate active and reactive power responses during the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.