Show simple item record

dc.contributor.authorErrouissi, R.
dc.contributor.authorAl-Durra, A.
dc.contributor.authorMuyeen, S.M.
dc.contributor.authorLeng, S.
dc.contributor.authorBlaabjerg, F.
dc.identifier.citationErrouissi, R. and Al-Durra, A. and Muyeen, S. and Leng, S. and Blaabjerg, F. 2017. Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control, in Proceedings of the Transactions on Power Electronics. 32 (3): pp. 2265-2277.

This paper presents a robust continuous-time model predictive direct power control for doubly fed induction generator (DFIG). The proposed approach uses Taylor series expansion to predict the stator current in the synchronous reference frame over a finite time horizon. The predicted stator current is directly used to compute the required rotor voltage in order to minimize the difference between the actual stator currents and their references over the predictive time. However, as the proposed strategy is sensitive to parameter variations and external disturbances, a disturbance observer is embedded into the control loop to remove the steady-state error of the stator current. It turns out that the steady-state and the transient performances can be identified by simple design parameters. In this paper, the reference of the stator current is directly calculated from the desired stator active and reactive powers without encompassing the parameters of the machine itself. Hence, no extra power control loop is required in the control structure to ensure smooth operation of the DFIG. The feasibility of the proposed strategy is verified by the experimental results of the grid-connected DFIG and satisfactory performances are obtained.

dc.titleOffset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control
dc.typeJournal Article
dcterms.source.titleIEEE Transactions on Power Electronics

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

curtin.departmentDepartment of Electrical and Computer Engineering
curtin.accessStatusOpen access

Files in this item


This item appears in the following Collection(s)

Show simple item record