Show simple item record

dc.contributor.authorWang, Y.
dc.contributor.authorLiu, C.
dc.contributor.authorZhu, F.
dc.contributor.authorBoushey, Carol
dc.contributor.authorDelp, E.
dc.date.accessioned2017-03-17T08:29:45Z
dc.date.available2017-03-17T08:29:45Z
dc.date.created2017-02-19T19:31:48Z
dc.date.issued2016
dc.identifier.citationWang, Y. and Liu, C. and Zhu, F. and Boushey, C. and Delp, E. 2016. Efficient superpixel based segmentation for food image analysis, in Proceedings of the International Conference on Image Processing, Sep 25-28 2016, pp. 2544-2548. Phoenix, AZ, USA: IEEE.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/51133
dc.identifier.doi10.1109/ICIP.2016.7532818
dc.description.abstract

In this paper, we propose a segmentation method based on normalized cut and superpixels. The method relies on color and texture cues for fast computation and efficient use of memory. The method is used for food image segmentation as part of a mobile food record system we have developed for dietary assessment and management. The accurate estimate of nutrients relies on correctly labelled food items and sufficiently well-segmented regions. Our method achieves competitive results using the Berkeley Segmentation Dataset and outperforms some of the most popular techniques in a food image dataset.

dc.titleEfficient superpixel based segmentation for food image analysis
dc.typeConference Paper
dcterms.source.volume2016-August
dcterms.source.startPage2544
dcterms.source.endPage2548
dcterms.source.titleProceedings - International Conference on Image Processing, ICIP
dcterms.source.seriesProceedings - International Conference on Image Processing, ICIP
dcterms.source.isbn9781467399616
curtin.departmentSchool of Public Health
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record