Show simple item record

dc.contributor.authorKumaresan, D.
dc.contributor.authorCross, Adam
dc.contributor.authorMoreira-Grez, B.
dc.contributor.authorKariman, K.
dc.contributor.authorNevill, Paul
dc.contributor.authorStevens, J.
dc.contributor.authorAllcock, R.
dc.contributor.authorO'Donnell, A.
dc.contributor.authorDixon, Kingsley
dc.contributor.authorWhiteley, A.
dc.date.accessioned2017-04-28T13:57:47Z
dc.date.available2017-04-28T13:57:47Z
dc.date.created2017-04-28T09:06:05Z
dc.date.issued2017
dc.identifier.citationKumaresan, D. and Cross, A. and Moreira-Grez, B. and Kariman, K. and Nevill, P. and Stevens, J. and Allcock, R. et al. 2017. Microbial Functional Capacity Is Preserved Within Engineered Soil Formulations Used In Mine Site Restoration. Scientific Reports. 7: 564.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/52162
dc.identifier.doi10.1038/s41598-017-00650-6
dc.description.abstract

Mining of mineral resources produces substantial volumes of crushed rock based wastes that are characterised by poor physical structure and hydrology, unstable geochemistry and potentially toxic chemical conditions. Recycling of these substrates is desirable and can be achieved by blending waste with native soil to form a 'novel substrate' which may be used in future landscape restoration. However, these post-mining substrate based 'soils' are likely to contain significant abiotic constraints for both plant and microbial growth. Effective use of these novel substrates for ecosystem restoration will depend on the efficacy of stored topsoil as a potential microbial inoculum as well as the subsequent generation of key microbial soil functions originally apparent in local pristine sites. Here, using both marker gene and shotgun metagenome sequencing, we show that topsoil storage and the blending of soil and waste substrates to form planting substrates gives rise to variable bacterial and archaeal phylogenetic composition but a high degree of metabolic conservation at the community metagenome level. Our data indicates that whilst low phylogenetic conservation is apparent across substrate blends we observe high functional redundancy in relation to key soil microbial pathways, allowing the potential for functional recovery of key belowground pathways under targeted management.

dc.publisherNature Publishing Group
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/IC150100041
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleMicrobial Functional Capacity Is Preserved Within Engineered Soil Formulations Used In Mine Site Restoration
dc.typeJournal Article
dcterms.source.volume7
dcterms.source.number1
dcterms.source.issn2045-2322
dcterms.source.titleScientific Reports
curtin.departmentDepartment of Environment and Agriculture
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/