Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Bauxite residue issues: III. Alkalinity and associated chemistry

    Access Status
    Fulltext not available
    Authors
    Gräfe, M.
    Power, G.
    Klauber, Craig
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Gräfe, M. and Power, G. and Klauber, C. 2011. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy. 108 (1-2): pp. 60-79.
    Source Title
    Hydrometallurgy
    DOI
    10.1016/j.hydromet.2011.02.004
    ISSN
    0304-386X
    School
    Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/52209
    Collection
    • Curtin Research Publications
    Abstract

    A detailed understanding of the complex buffering and neutralization chemistry of bauxite residue remains the key to improved management, both in terms of reduced environmental impact for current storage practices, legacy costs and for the utilization of the material as an industrial by-product for other applications. In spite of 120 years of continuous industrial production, the nature of residue and the chemistry of remediation is still poorly understood. This review brings together what is known of residue behavior and outlines the existing knowledge gaps in our understanding. It examines those aspects of the Bayer process that relate to the creation of the alkalinity in residue and discusses in detail the complex chemical reactions that govern the neutralization behavior. pH is the "master variable" in the chemistry of residue and is strongly buffered by the presence of multiple alkaline solids. The pH in untreated residue liquor (washer overflow) ranges over 9.2-12.8 with an average value of 11.3 ± 1.0. This high alkalinity is the primary reason for residue classification as a hazardous material, and in conjunction with the sodic content the primary reason that residue will not support plant life. The pH is highly buffered by the presence of alkaline solids (various hydroxides, carbonates, aluminates and aluminosilicates) that are formed by the action of caustic soda on bauxite in the Bayer process refinery. The presence of such Bayer process characteristic solids causes the acid neutralization behavior of residues to be highly complex and makes impractical the removal of alkalinity by simply washing with water. This chemistry also impacts physical properties e.g. bulk density, sedimentation rates and compaction, hydraulic conductivity, drying rates and dusting behavior, and physical strength after drying. Understanding how surface charge develops, distributes and abates in the residue mineral assemblage as a function of acid input will be paramount to understanding neutralization reactions overall, to successfully model them and eventually to implement the most effective neutralization measures that create conditions at the surface conducive to reduced environmental impact, e.g. to enable plant growth. Once this is understood a model can be constructed for the neutralization behavior of bauxite residue based on the underlying mineralogy and its relationship to overall surface charge. This is the third in a series of four reviews examining bauxite residue issues in detail. © 2011 Elsevier B.V. All rights reserved.

    Related items

    Showing items related by title, author, creator and subject.

    • Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation
      Gräfe, M.; Klauber, Craig (2011)
      Worldwide bauxite residue disposal areas contain an estimated 2.7 billion tonnes of bauxite residue, increasing by ~ 120 million tpa. The future management of this residue is of increasing environmental concern. Ideally ...
    • Bauxite residue issues: I. Current management, disposal and storage practices
      Power, G.; Gräfe, M.; Klauber, Craig (2011)
      Bauxite residue has been continuously produced since the inception of the alumina/aluminium industry in the late nineteenth century. The global inventory of bauxite residue reached an estimated 2.7 billion tonnes in 2007 ...
    • Bauxite residue issues: II. options for residue utilization
      Klauber, Craig; Gräfe, M.; Power, G. (2011)
      Worldwide bauxite residue disposal areas contain an estimated 2.7 billion tonnes of residue, increasing by approximately 120 million tonnes per annum. The question of what to do with bauxite residue arose with the development ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.