Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation

    Access Status
    Fulltext not available
    Authors
    Gräfe, M.
    Klauber, Craig
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Gräfe, M. and Klauber, C. 2011. Bauxite residue issues: IV. Old obstacles and new pathways for in situ residue bioremediation. Hydrometallurgy. 108 (1-2): pp. 46-59.
    Source Title
    Hydrometallurgy
    DOI
    10.1016/j.hydromet.2011.02.005
    ISSN
    0304-386X
    School
    Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/52309
    Collection
    • Curtin Research Publications
    Abstract

    Worldwide bauxite residue disposal areas contain an estimated 2.7 billion tonnes of bauxite residue, increasing by ~ 120 million tpa. The future management of this residue is of increasing environmental concern. Ideally it would be utilized as an industrial by-product for other applications (the zero waste situation), but realistically the drivers for zero waste are not high and there are significant cost and liability barriers to implementation. Any future utilization will most likely be based on contemporary production and residue currently consigned to long-term storage is unlikely to be recovered, thus the environmental impact risk remains. This prompts the question as to whether remediation can be conducted in situ, i.e. changing the residue chemistry without specifically re-excavating for conventional processing. In this review the key parameters of residue chemistry and its physical properties are considered in the context of what is required for a remediated residue to support a viable eco-system, i.e. what is required for rehabilitation in terms of a series of easily understandable goals. Specifically residue characteristics of stable residue solution such that; pH of 5.5-9.0, sodium adsorption ratio (SAR) of = 7, exchangeable sodium percentage (ESP) of = 9.5, residual sodium carbonate (RSC) of = 1.25, electrical conductivity (EC) of < 4 mS/cm. These goals are a long way from typical existing residue. Bauxite residue itself is the by-product of an iconic hydrometallurgical process, namely the Bayer process. While understanding the hydrometallurgical consequences is one key to the successful implementation of a remediation strategy, it is also clear that the key to in situ remediation is most likely not conventional hydrometallurgy but a systematic and targeted bioremediation approach. The most promising pathway for an in situ rehabilitated bauxite residue disposal area would appear to be bioremediation based on strategies developed for saline-sodic soils using halophyte plants and alkaliphilic microbes to effectively farm sodium from the system and mitigate pH, respectively. On bauxite residue surfaces the advantages and similarities should closely parallel saline-sodic agricultural soils. Halophytes provide great potential to accomplish some of the necessary rehabilitation goals indicated. Practical environmental rehabilitation attempts to date have been more concerned with BRDA closure in a cosmetic sense. These have had some limited success and probably reflect the aim of the work to achieve re-vegetation, relying on a limited understanding of the residue chemistry and lacking detailed information on individual plant responses and tolerances. It is proposed that research design for bioremediation should commence with a more rigorous plant, fungi and microbe selection in conjunction with a better understanding of residue chemistry. That is, tackling both the abiotic and biotic aspects of the problem systematically, especially as the sodium halophyte farming would initially be progressing into an even more extreme environment. This cannot be an unassisted process; without intervention BRDA environments would remain sterile for an extended period of time. Amendments such as applied gypsum can further displace Na+ from the residue exchange complexes and in conjunction with other divalent cation strategies control pH within halophyte tolerance. Both halophyte produced organic acids and halophyte promoted microbial populations provide H+ and increase the partial pressure of CO2 in the rooting zones to further the rehabilitation process. Suitable drainage strategies, along with other additions (organic waste, sewage sludge, macro and micro-nutrients) will promote plant and microbe survival. Whilst this approach would not be envisaged to be either capital or operating intensive, it is not a "quick-fix". Bio-remediation is a process that would require multiple growing seasons, but well within the typical lifetime of a refinery operation. This is the final in a series of four related reviews examining bauxite residue issues in detail. © 2011 Elsevier B.V. All rights reserved.

    Related items

    Showing items related by title, author, creator and subject.

    • Bauxite residue issues: III. Alkalinity and associated chemistry
      Gräfe, M.; Power, G.; Klauber, Craig (2011)
      A detailed understanding of the complex buffering and neutralization chemistry of bauxite residue remains the key to improved management, both in terms of reduced environmental impact for current storage practices, legacy ...
    • Developing completion criteria for rehabilitation areas on arid and semi-arid mine sites in Western Australia
      Brearley, Darren (2003)
      Continued expansion of the gold and nickel mining industry in Western Australia during recent years has led to disturbance of larger areas and the generation of increasing volumes of waste rock. Mine operators are obligated ...
    • Revegetation of salt-affected land after mining: germination and establishment of halophytes.
      Barrett, Gregory J. (2000)
      Gold and nickel mining are a common land use in the semiarid Eastern Goldfields region of Western Australia,, A frequent outcome of mining activity is highly saline landforms that result from the widespread use of hypersaline ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.