Show simple item record

dc.contributor.authorAragones, A.
dc.contributor.authorDarwish, Nadim
dc.contributor.authorCiampi, Simone
dc.contributor.authorSanz, F.
dc.contributor.authorGooding, J.
dc.contributor.authorDiez-Perez, I.
dc.date.accessioned2017-04-28T13:58:16Z
dc.date.available2017-04-28T13:58:16Z
dc.date.created2017-04-28T09:06:14Z
dc.date.issued2017
dc.identifier.citationAragones, A. and Darwish, N. and Ciampi, S. and Sanz, F. and Gooding, J. and Diez-Perez, I. 2017. Single-molecule electrical contacts on silicon electrodes under ambient conditions. Nature Communications. 2017: 15056.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/52310
dc.identifier.doi10.1038/ncomms15056
dc.description.abstract

The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule electronics to shift towards the semiconducting platform of the current microelectronics industry. Here, we report silicon-based single-molecule contacts that are mechanically and electrically stable under ambient conditions. The single-molecule contacts are prepared on silicon electrodes using the scanning tunnelling microscopy break-junction approach using a top metallic probe. The molecular wires show remarkable current–voltage reproducibility, as compared to an open silicon/nano-gap/metal junction, with current rectification ratios exceeding 4,000 when a low-doped silicon is used. The extension of the single-molecule junction approach to a silicon substrate contributes to the next level of miniaturization of electronic components and it is anticipated it will pave the way to a new class of robust single-molecule circuits.

dc.publisherMacmillan Publishers Limited
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DE160101101
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleSingle-molecule electrical contacts on silicon electrodes under ambient conditions
dc.typeJournal Article
dcterms.source.volume-
dcterms.source.startPage---
dcterms.source.issn2041-1723
dcterms.source.titleNature Communications
curtin.departmentNanochemistry Research Institute
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/