Metal-Single-Molecule-Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes.
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
Additional URLs
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on ⟨111⟩ than on ⟨100⟩, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal-single-molecule-semiconductor junctions between silicon and gold source and drain, electrodes. Au-C and Si-C molecule-electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s, which is 30-400% higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current-voltage properties during the lifetime of the molecular junction. We show that current rectification, which is intrinsic to metal-semiconductor junctions, can be controlled when a single-molecule bridges the gap in the junction. The system changes from being a current rectifier in the absence of a molecular bridge to an ohmic contact when a single molecule is covalently bonded to both silicon and gold electrodes. This study paves the way for the merging of the fields of single-molecule and silicon electronics.
Related items
Showing items related by title, author, creator and subject.
-
Peiris, Chandramalika ; Ciampi, Simone ; Dief, Essam ; Zhang, Jinyang ; Canfield, P.J.; Le Brun, A.P.; Kosov, D.S.; Reimers, J.R.; Darwish, Nadim (2020)We report the synthesis of covalently linked self-assembled monolayers (SAMs) on silicon surfaces, using mild conditions, in a way that is compatible with silicon-electronics fabrication technologies. In molecular ...
-
Aragones, A.; Darwish, Nadim; Ciampi, Simone; Sanz, F.; Gooding, J.; Diez-Perez, I. (2017)The ultimate goal in molecular electronics is to use individual molecules as the active electronic component of a real-world sturdy device. For this concept to become reality, it will require the field of single-molecule ...
-
Aragonès, A.; Darwish, Nadim; Saletra, W.; Pérez-García, L.; Sanz, F.; Puigmartí-Luis, J.; Amabilino, D.; Díez-Pérez, I. (2014)Porphyrin-based molecular wires are promising candidates for nanoelectronic and photovoltaic devices due to the porphyrin chemical stability and unique optoelectronic properties. An important aim toward exploiting single ...