Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    New insights into the early stages of silica-controlled barium carbonate crystallisation

    Access Status
    Open access via publisher
    Authors
    Eiblmeier, J.
    Schürmann, U.
    Kienle, L.
    Gebauer, Denis
    Kunz, W.
    Kellermeier, M.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Eiblmeier, J. and Schürmann, U. and Kienle, L. and Gebauer, D. and Kunz, W. and Kellermeier, M. 2014. New insights into the early stages of silica-controlled barium carbonate crystallisation. Nanoscale. 6 (24): pp. 14939-14949.
    Source Title
    Nanoscale
    DOI
    10.1039/c4nr05436a
    ISSN
    2040-3364
    School
    Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/52405
    Collection
    • Curtin Research Publications
    Abstract

    © The Royal Society of Chemistry.Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures resembling those typically displayed by biogenic minerals. These so-called biomorphs were shown to be composed of uniform elongated carbonate nanoparticles that are arranged according to a specific order over mesoscopic scales. In the present study, we have investigated the circumstances leading to the continuous formation and stabilisation of such well-defined nanometric building units in these inorganic systems. For this purpose, in situ potentiometric titration measurements were carried out in order to monitor and quantify the influence of silica on both the nucleation and early growth stages of barium carbonate crystallisation in alkaline media at constant pH. Complementarily, the nature and composition of particles occurring at different times in samples under various conditions were characterised ex situ by means of high-resolution electron microscopy and elemental analysis. The collected data clearly evidence that added silica affects carbonate crystallisation from the very beginning (i.e. already prior to, during, and shortly after nucleation), eventually arresting growth on the nanoscale by cementation of BaCO3 particles within a siliceous matrix. Our findings thus shed light on the fundamental processes driving bottom-up self-organisation in silica-carbonate materials and, for the first time, provide direct experimental proof that silicate species are responsible for the miniaturisation of carbonate crystals during growth of biomorphs, hence confirming previously discussed theoretical models for their formation mechanism. This journal is

    Related items

    Showing items related by title, author, creator and subject.

    • Experimental studies on the interactions between dolomite and SiO2-rich fluids: implications for the formation of carbonate reservoirs
      Wang, Xiaolin; Wan, Ye; Hu, Wenxuan; You, Donghua; Cao, Jian; Zhu, Dongya; Li, Zhen (2017)
      Objectives: Investigating the water-rock interaction mechanism and kinetics between dolomite and silica rich hydrothermal fluids; Discussing the effect of silica rich hydrothermal fluids on the formation of deep carbonate ...
    • Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform
      Rasmussen, Birger; Muhling, Janet; Suvorova, A.; Krapež, B. (2017)
      © 2016 Elsevier B.V.Banded iron formations (BIFs) were deposited as deep-water facies distal to the late Archean Campbellrand carbonate platform, Transvaal Supergroup, South Africa. They are traditionally interpreted to ...
    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.