A search for long-time-scale, low-frequency radio transients
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
We present a search for transient and highly variable sources at low radio frequencies (150-200 MHz) that explores long timescales of 1-3 years. We conducted this search by comparing the TIFR GMRT Sky Survey Alternative Data Release 1 (TGSS ADR1) and the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey catalogues. To account for the different completeness thresholds in the individual surveys, we searched for compact GLEAM sources above a flux density limit of 100 mJy that were not present in the TGSS ADR1; and also for compact TGSS ADR1 sources above a flux density limit of 200 mJy that had no counterpart in GLEAM. From a total sample of 234 333 GLEAM sources and 275 612 TGSS ADR1 sources in the overlap region between the two surveys, there were 99658 GLEAM sources and 38 978 TGSS ADR sources that passed our flux density cutoff and compactness criteria. Analysis of these sources resulted in three candidate transient sources. Further analysis ruled out two candidates as imaging artefacts. We analyse the third candidate and show it is likely to be real, with a flux density of 182 +/- 26 mJy at 147.5 MHz. This gives a transient surface density of rho = (6.2 +/- 6) x 10-5 deg-2 . We present initial follow-up observations and discuss possible causes for this candidate. The small number of spurious sources from this search demonstrates the high reliability of these two new low-frequency radio catalogues.
Related items
Showing items related by title, author, creator and subject.
-
Carbone, D.; Van Der Horst, A.; Wijers, R.; Swinbank, J.; Rowlinson, A.; Broderick, J.; Cendes, Y.; Stewart, A.; Bell, M.; Breton, R.; Corbel, S.; Eislöffel, J.; Fender, R.; Grießmeier, J.; Hessels, J.; Jonker, P.; Kramer, M.; Law, C.; Miller-Jones, James; Pietka, M.; Scheers, L.; Stappers, B.; Van Leeuwen, J.; Wijnands, R.; Wise, M.; Zarka, P. (2016)© 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We report on the results of a search for radio transients between 115 and 190 MHz with the LOw-Frequency ARray (LOFAR). ...
-
Riseley, C.J.; Galvin, T.J.; Sobey, Charlotte ; Vernstrom, T.; White, Sarah V. ; Zhang, X.; Gaensler, B.M.; Heald, G.; Anderson, C.S.; Franzen, Thomas ; Hancock, Paul ; Hurley-Walker, Natasha ; Lenc, E.; Van Eck, C.L. (2020)The low-frequency linearly polarised radio source population is largely unexplored. However, a renaissance in low-frequency polarimetry has been enabled by pathfinder and precursor instruments for the Square Kilometre ...
-
Giroletti, M.; Massaro, F.; D'Abrusco, R.; Lico, R.; Burlon, D.; Hurley-Walker, Natasha; Johnston-Hollitt, M.; Morgan, J.; Pavlidou, V.; Bell, M.; Bernardi, G.; Bhat, Ramesh; Bowman, J.; Briggs, F.; Cappallo, R.; Corey, B.; Deshpande, A.; Ewall-Rice, A.; Emrich, David; Gaensler, B.; Goeke, R.; Greenhill, L.; Hazelton, B.; Hindson, L.; Kaplan, D.; Kasper, J.; Kratzenberg, E.; Feng, L.; Jacobs, D.; Kudryavtseva, N.; Lenc, E.; Lonsdale, C.; Lynch, Mervyn; McKinley, B.; McWhirter, S.; Mitchell, D.; Morales, M.; Morgan, E.; Oberoi, D.; Offringa, A.; Ord, S.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A.; Roshi, A.; Udaya Shankar, N.; Srivani, K.; Subrahmanyan, R.; Tingay, Steven; Waterson, M.; Wayth, Randall; Webster, R.; Whitney, A.; Williams, A.; Williams, C. (2016)© ESO 2016. Context. Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so ...