Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Predicting and testing continental vertical motion histories since the Paleozoic

    Access Status
    Fulltext not available
    Authors
    Zhang, Nan
    Zhong, S.
    Flowers, R.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhang, N. and Zhong, S. and Flowers, R. 2012. Predicting and testing continental vertical motion histories since the Paleozoic. Earth and Planetary Science Letters. 317-318: pp. 426-435.
    Source Title
    Earth and Planetary Science Letters
    DOI
    10.1016/j.epsl.2011.10.041
    ISSN
    0012-821X
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/53244
    Collection
    • Curtin Research Publications
    Abstract

    Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. These observations provide important constraints on and test of mantle dynamic models. Based on global mantle convection models coupled with the surface plate motion history, we compute dynamic topography and its history for the last 400. Ma associated with Pangea assembly and breakup, with particular focus on cratonic regions. We propose that burial-unroofing histories of cratons inferred from thermochronology data can be used as a new diagnostic to test dynamic topography and mantle dynamic models. Our models show that there are currently two broad dynamic topography highs in the Pacific and Africa for the present-day Earth that are associated with the broad, warm structures (i.e., superplumes) in the deep mantle, consistent with previous proposals of dynamical support for the Pacific and African superswells. Our models reveal that Pangea assembly and breakup, by affecting subduction and mantle upwelling processes, have significant effects on continental vertical motions. Our models predict that the Slave craton in North America subsides before Pangea assembly at 330. Ma but uplifts significantly from 330. Ma to 240. Ma in response to pre-Pangea subduction and post-assembly mantle warming. The Kaapvaal craton of Africa is predicted to undergo uplift from ~180. Ma to 90. Ma after Pangea breakup, but its dynamic topography remains stable for the last 90. Ma. The predicted histories of elevation change for the Slave and Kaapvaal cratons compare well with the burial-unroofing histories inferred from thermochronology studies, thus supporting our dynamic models including the development of the African superplume mantle structure. The vertical motion histories for other cratons can provide further tests of and constraints on our mantle dynamic models.

    Related items

    Showing items related by title, author, creator and subject.

    • Epeirogeny or eustasy? Paleozoic-Mesozoic vertical motion of the North American continental interior from thermochronometry and implications for mantle dynamics
      Flowers, R.; Ault, A.; Kelley, S.; Zhang, Nan; Zhong, S. (2012)
      Geodynamic models predict that deep mantle buoyancy forces exert important control on the vertical motion history of continents, but it is difficult to isolate the effects of dynamic topography in the geologic record. ...
    • A model for the evolution of the Earth's mantle structure since the Early Paleozoic
      Zhang, N.; Zhong, S.; Leng, W.; Li, Zheng-Xiang (2010)
      Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a ...
    • Heat fluxes at the Earth's surface and core-mantle boundary since Pangea formation and their implications for the geomagnetic superchrons
      Zhang, Nan; Zhong, S. (2011)
      The Earth's surface and core-mantle boundary (CMB) heat fluxes are controlled by mantle convection and have important influences on Earth's thermal evolution and geodynamo processes in the core. However, the long-term ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.