Heat fluxes at the Earth's surface and core-mantle boundary since Pangea formation and their implications for the geomagnetic superchrons
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The Earth's surface and core-mantle boundary (CMB) heat fluxes are controlled by mantle convection and have important influences on Earth's thermal evolution and geodynamo processes in the core. However, the long-term variations of the surface and CMB heat fluxes remain poorly understood, particularly in response to the supercontinent Pangea - likely the most significant global tectonic event in the last 500. Ma. In this study, we reconstruct temporal evolution of the surface and CMB heat fluxes since the Paleozoic by formulating three-dimensional spherical models of mantle convection with plate motion history for the last 450. Ma that includes the assembly and break-up of supercontinent Pangea. Our models reproduce well present-day observations of the surface heat flux and seafloor age distribution. Our models show that the present-day CMB heat flux is low below the central Pacific and Africa but high elsewhere due to subducted slabs, particularly when chemically dense piles are present above the CMB. We show that while the surface heat flux may not change significantly in response to Pangea assembly, it increases by ~. 16% from 200 to 120. Ma ago as a result of Pangea breakup and then decreases for the last 120. Ma to approximately the pre-200. Ma value. As consequences of the assembly and breakup of Pangea, equatorial CMB heat flux reaches minimum at ~. 270. Ma and again at ~. 100. Ma ago, while global CMB heat flux is a maximum at ~. 100. Ma ago. These extrema in CMB heat fluxes coincide with the Kiaman (316-262. Ma) and Cretaceous (118-83. Ma) Superchrons, respectively, and may be responsible for the Superchrons.
Related items
Showing items related by title, author, creator and subject.
-
Zhang, N.; Zhong, S.; Leng, W.; Li, Zheng-Xiang (2010)Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a ...
-
Flowers, R.; Ault, A.; Kelley, S.; Zhang, Nan; Zhong, S. (2012)Geodynamic models predict that deep mantle buoyancy forces exert important control on the vertical motion history of continents, but it is difficult to isolate the effects of dynamic topography in the geologic record. ...
-
Zhang, Nan; Zhong, S.; Flowers, R. (2012)Dynamic topography at the Earth's surface caused by mantle convection can affect a range of geophysical and geological observations including bathymetry, sea-level change, continental flooding, sedimentation and erosion. ...