Scratch Fracture of Polycrystalline Silicon Wafers
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Fracture of silicon wafers is responsible for lower than desirable manufacturing yields in the photovoltaic industry. This study investigates the fracture response of polycrystalline silicon wafers under sliding contacts at different length scales, by means of macro and microscratch tests which simulate cutting processes. The dominant fracture modes were found to be partial cone cracking (macro) and radial cracking (micro). Statistical analysis of the critical loads for crack initiation showed that polycrystalline wafers are weaker than their single-crystal counterparts, that is, they crack at lower applied loads under comparable conditions. Moreover, the Weibull modulus of polycrystalline silicon was found to be the average of the relevant single-crystal directions. Subsequent microscopic observations and flexure tests reveal that the lower resistance of polycrystalline silicon to scratch fracture is due mainly to the presence of relatively large polishing defects, and not to the weakness of its grain boundaries. Alternatives are proposed to minimize damage during ingot cutting, with a view to minimizing wafer breakages during wafer handling and machining.
Related items
Showing items related by title, author, creator and subject.
-
Alamri, Hatem Rashed (2012)In recent years, cellulose fibre-reinforced polymer composites have been gaining a great attention in several engineering applications due to their desirable properties, which include low density, low cost, renewability ...
-
Galvin, Robert (2007)Development of a hydrocarbon reservoir requires information about the type of fluid that saturates the pore space, and the permeability distribution that determines how the fluid can be extracted. The presence of fractures ...
-
Yu, H.; Li, Xin Yong; Quan, X.; Chen, S.; Zhang, Y. (2009)For the sake of utilizing the light-harvesting ability of Si in pollution control, the p-silicon nanowire (SiNW)/TiO2 core/shell heterojunction arrays have been synthesized. Based on the surface photovoltage (SPV) ...