The interaction in sorbitol-plasticized starch bionanocomposites via positron annihilation lifetime spectroscopy and small angle X-ray scattering
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
We investigated the free volume variations (size and distribution) within sorbitol plasticized high amylose bionanocomposites of different formula where the interactions among sorbitol, amylose and hydrophilic montmorillonite nanoclay (MMT) modified the crystallinity and therefore, the free volume of the matrix. Positron Annihilation Lifetime Spectroscopy (PALS) is a useful technique to monitor the changes of free volume within the polymer matrix – due to polymer–plasticizer or polymer–polymer interactions. In a recent investigation (Liu et al., Carbohydrate Polymer, 2011, 85(1), 97–104), we demonstrated that there exists a threshold plasticizer concentration – above which the matrix crystallinity and moisture content can be significantly altered. By investigating the relationship between the changes of free volume and the development of crystalline morphology, we presented evidence that, at the molecular level, the free volume changes due to amylose–MMT interactions were affected by the concentration of the sorbitol plasticizer. The free volume analysis revealed that when the concentration of sorbitol was low (5 wt%), the bionanocomposite showed a bimodal distribution for free volume pore-size. As the sorbitol concentration increased, these free volume pores coalesced. Further, due to sorbitol's hydrophilic nature, this study also presented the evidence of moisture ‘lock-in’ within the bionanocomposites matrix; only one pore size – was confirmed in the high moisture content samples; meaning that sorbitol was able to have binary interactions with the amylose and with the water molecules so that the free volume pore-size was relatively more uniform.
Related items
Showing items related by title, author, creator and subject.
-
Synergistic interactions of plasticizers and nanoclays in hydrophilic starch based bionanocompositesLiu, HuiHua (2011)Depletion of non-renewable resources and exorbitant levels of carbon dioxide emissions have questioned the further usage of traditional plastics. The imbalance in global sustainability has necessitated the development and ...
-
Liu, Huihua; Chaudhary, Deeptangshu; Yusa, S.; Tade, Moses (2011)We investigate the influence of sorbitol and natural Na+-montmorillonite (nanoclay) loading on the characteristic of high amylose nanocomposites and the distribution of nanoclay after extrusion processing. The innovative ...
-
Chaudhary, Deeptangshu; Adhikari, B.; Kasapis, S. (2011)Two plasticizers namely, glycerol and xylitol, based on their similar molecular size (6.3 A) but different molecular weights (Glycerol-92; Xylitol-152) were selected for studying the glass-transition behaviour (rubber ...