Show simple item record

dc.contributor.authorGao, J.
dc.contributor.authorLun, Y.
dc.contributor.authorHu, Y.
dc.contributor.authorYou, Z.
dc.contributor.authorTan, X.
dc.contributor.authorWang, S.
dc.contributor.authorSunarso, J.
dc.contributor.authorLiu, Shaomin
dc.date.accessioned2017-06-23T03:01:06Z
dc.date.available2017-06-23T03:01:06Z
dc.date.created2017-06-19T03:39:33Z
dc.date.issued2017
dc.identifier.citationGao, J. and Lun, Y. and Hu, Y. and You, Z. and Tan, X. and Wang, S. and Sunarso, J. et al. 2017. The effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers. Journal of Industrial and Engineering Chemistry. 53: pp. 276-284.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/53749
dc.identifier.doi10.1016/j.jiec.2017.04.036
dc.description.abstract

Oxygen-selective mixed ionic-electronic conducting (MIEC) ceramic membrane technology enables clean coal combustion and membrane reactor for green chemical synthesis. To be practical in these applications that involve CO2 presence, the membrane materials should have simultaneously high CO2 resistance and oxygen permeation fluxes. This work probed these properties for the perovskite oxide family of La0.6X0.4FeO3-d (X=Mg, Ca, Sr, or Ba), i.e., La0.6Mg0.4FeO3-d (LMF), La0.6Ca0.4FeO3-d (LCF), La0.6Sr0.4FeO3-d (LSF), and La0.6Ba0.4FeO3-d (LBF) in the hollow fiber membrane geometry that is highly suitable for industrial application. LCF hollow fiber displayed the best balance in CO2 resistance and oxygen permeation fluxes.

dc.publisherElsevier
dc.titleThe effect of A-site element on CO2 resistance of O2-selective La-based perovskite hollow fibers
dc.typeJournal Article
dcterms.source.issn1226-086X
dcterms.source.titleJournal of Industrial and Engineering Chemistry
curtin.departmentDepartment of Chemical Engineering
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record