Adaptive unscented Gaussian likelihood approximation filter
dc.contributor.author | Garcia Fernandez, Angel | |
dc.contributor.author | Morelande, M. | |
dc.contributor.author | Grajal, J. | |
dc.contributor.author | Svensson, L. | |
dc.date.accessioned | 2017-07-27T05:20:11Z | |
dc.date.available | 2017-07-27T05:20:11Z | |
dc.date.created | 2017-07-26T11:11:19Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Garcia Fernandez, A. and Morelande, M. and Grajal, J. and Svensson, L. 2015. Adaptive unscented Gaussian likelihood approximation filter. Automatica. 54: pp. 166-175. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/54227 | |
dc.identifier.doi | 10.1016/j.automatica.2015.02.005 | |
dc.description.abstract |
This paper focuses on the update step of Bayesian nonlinear filtering. We first derive the unscented Gaussian likelihood approximation filter (UGLAF), which provides a Gaussian approximation to the likelihood by applying the unscented transformation to the inverse of the measurement function. The UGLAF approximation is accurate in the cases where the unscented Kalman filter (UKF) is not and the other way round. As a result, we propose the adaptive UGLAF (AUGLAF), which selects the best approximation to the posterior (UKF or UGLAF) based on the Kullback-Leibler divergence. This enables AUGLAF to outperform both the UKF and UGLAF. | |
dc.publisher | Pergamon Press | |
dc.title | Adaptive unscented Gaussian likelihood approximation filter | |
dc.type | Journal Article | |
dcterms.source.volume | 54 | |
dcterms.source.startPage | 166 | |
dcterms.source.endPage | 175 | |
dcterms.source.issn | 0005-1098 | |
dcterms.source.title | Automatica | |
curtin.department | Department of Electrical and Computer Engineering | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |