Effectiveness of parallel second order model over second and first order models
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The chlorine decay is usually described by the first order model (FOM) due to its easiness, although its weaknesses are well known. In this work, two better models, second order model (SOM) and parallel second order model (PSOM), are compared for their accuracy to predict chlorine residuals for a single dosing scenario. Results showed that SOM model provided a better prediction compared to FOM. However, SOM had two important shortcomings. Firstly, it overly predicted residuals in the lower end of chlorine decay curve, implying false sense of security in achieving secondary disinfection goals. Secondly, when higher initial dose was practiced, chlorine residual prediction was poorer. PSOM on the other hand provided the best fit for the experimental data in the initial as well as the later part of the decay curve for any doses. Compared to SOM which had two parameters, PSOM is more complex as it uses four parameters. Comparing to the advantages, complexity of PSOM is not an issue as EPANET-MSX can be used for full scale system simulation.
Related items
Showing items related by title, author, creator and subject.
-
Jabari Kohpaei, Ahmad (2010)Chlorine is broadly used for water disinfection at the final stage of water treatment because of its high performance to inactivate pathogenic microorganisms, its lower cost compared to other well-known disinfectants and ...
-
Muslim, Abrar (2007)An ideal drinking water distribution system (DWDS) must supply safe drinking water with free chlorine residual (FCR) in the form of HOCI and OCIֿ at a required concentration level. Meanwhile the FCR is consumed in the ...
-
Jabari Kohpaei, Ahmad; Sathasivan, Arumugam (2011)All distributed drinking water receives some form of disinfection and a minimum disinfectant residual should be maintained at the customer tap. The most popular disinfectant is chlorine. Chlorine reacts with compounds in ...