New biotechnological microencapsulating methodology utilizing individualized gradient-screened jet laminar flow techniques for pancreatic ß-cell delivery: bile acids support cell energy-generating mechanisms
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
In previous studies, we developed a new technique (ionic gelation vibrational jet flow; IGVJF) in order to encapsulate pancreatic β-cells, for insulin in vivo delivery, and diabetes treatment. The fabricated microcapsules showed good morphology but limited cell functions. Thus, this study aimed to optimize the IGVJF technique, by utilizing integrated electrode tension, coupled with high internal vibration, jet-flow polymer stream rate, ionic bath-gelation concentrations, and gelation time stay. The study also utilized double inner/outer nozzle segmented-ingredient flow of microencapsulating dispersion, in order to form β-cell microcapsules. Furthermore, a microcapsule-stabilizing bile acid was added, and microcapsule’s stability and cell functions measured. Buchi-based built-in system utilizing IGVJF technology was screened to produce best microcapsule-containing β-cells with or without a stabilizing-enhancing bile acid. Formed microcapsules were examined, for physical characteristics, and encapsulated cells were examined for survival, insulin release, and inflammatory profiles. Optimized microencapsulating parameters, using IGJVF, were: 1000 V voltage, 2500 Hz frequency, 1 mL/min flow rate, 3% w/v ionic-bath gelation concentration, and 20 min gelation time. Microcapsules showed good morphology and stability, and the encapsulated cells showed good survival, and insulin secretion, which was optimized by the bile acid. Deployed IGVJF-based microencapsulating parameters utilizing stability-enhancing bile acid produced best microcapsules with best pancreatic β-cells functions and survival rate, which, suggests potential application in cell transplantation.
Related items
Showing items related by title, author, creator and subject.
-
Mooranian, Armin; Negrulj, R.; Arfuso, Frank; Al-Salami, Hani (2014)Introduction: In a recent study, we confirmed good chemical and physical compatibility of microencapsulated pancreatic β-cells using a novel formulation of low viscosity sodium alginate (LVSA), Poly-L-Ornithine (PLO), and ...
-
Mooranian, A.; Negrulj, R.; Morahan, G.; Jamieson, E.; Al-Salami, Hani (2016)Purpose: Recently sodium alginate (SA)-poly-l-ornithine (PLO) microcapsules containing pancreatic β-cells that showed good morphology but low cell viability (<27%) was designed. In this study, two new polyelectrolytes, ...
-
Mooranian, Armin; Negrulj, Rebecca; Al-Salami, Hani (2016)© 2016. Springer Science+Business Media New York.Introduction: The secondary bile acid, deoxycholic acid (DCA), has been shown to exert membrane stabilising effects on a pH sensitive delivery system for the oral delivery ...