Multi-object tracking using hybrid observation in PHD filter
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
In this paper, we propose a novel multi-object tracking method to track unknown number of objects with a single camera system. We design the tracking method via probability hypothesis density (PHD) filtering which considers multiple object states and their observations as random finite sets (RFSs). The PHD filter is capable of rejecting clutters, handling object appearances and disappearances, and estimating the trajectories of multiple objects in a unified framework. Although the PHD filter is robust to cluttered environment, it is vulnerable to missed detections. For this reason, we include local observations in an RFS of observation model. Local observations are locally generated near the individual tracks by using on-line trained local detector. The main purpose of the local observation is to handle the missed detections and to provide identity (label information) to each object in filtering procedure. The experimental results show that the proposed method robustly tracks multiple objects under practical situations. © 2013 IEEE.
Related items
Showing items related by title, author, creator and subject.
-
Mallick, M.; Rubin, S.; Vo, Ba-Ngu (2013)Space object (satellite or space-debris) tracking (SOT) has not received much attention in the Information Fusion community, although the first Fusion conference was held in 1998. A special session on SOT was organized ...
-
Leoputra, Wilson Suryajaya (2009)Foreground object detection is a fundamental task in computer vision with many applications in areas such as object tracking, event identification, and behavior analysis. Most conventional foreground object detection ...
-
Nguyen, Hoa ; Rezatofighi, H.; Vo, Ba-Ngu ; Ranasinghe, D.C. (2019)We consider the problem of online path planning for joint detection and tracking of multiple unknown radio-tagged objects. This is a necessary task for gathering spatio-temporal information using UAVs with on-board sensors ...