Online UAV Path Planning for Joint Detection and Tracking of Multiple Radio-Tagged Objects
Citation
Source Title
Additional URLs
ISSN
Faculty
School
Funding and Sponsorship
Collection
Abstract
We consider the problem of online path planning for joint detection and tracking of multiple unknown radio-tagged objects. This is a necessary task for gathering spatio-temporal information using UAVs with on-board sensors in a range of monitoring applications. In this paper, we propose an online path planning algorithm with joint detection and tracking because signal measurements from these objects are inherently noisy. We derive a partially observable Markov decision process with a random finite set track-before-detect (TBD) multi-object filter, which also maintains a safe distance between the UAV and the objects of interest using a void probability constraint. We show that, in practice, the multi-object likelihood function of raw signals received by the UAV in the time-frequency domain is separable and results in a numerically efficient multi-object TBD filter. We derive a TBD filter with a jump Markov system to accommodate maneuvering objects capable of switching between different dynamic modes. Our evaluations demonstrate the capability of the proposed approach to handle multiple radio-tagged objects subject to birth, death, and motion modes. Moreover, this online planning method with the TBD-based filter outperforms its detection-based counterparts in detection and tracking, especially in low signal-to-noise ratio environments.
Related items
Showing items related by title, author, creator and subject.
-
Yoon, J.; Yoon, K.; Kim, Du Yong (2013)In this paper, we propose a novel multi-object tracking method to track unknown number of objects with a single camera system. We design the tracking method via probability hypothesis density (PHD) filtering which considers ...
-
Kim, Du Yong; Vo, Ba-Ngu; Vo, Ba Tuong; Jeon, M. (2019)This paper proposes an online multi-object tracking algorithm for image observations using a top-down Bayesian formulation that seamlessly integrates state estimation, track management, handling of false positives, false ...
-
Leoputra, Wilson Suryajaya (2009)Foreground object detection is a fundamental task in computer vision with many applications in areas such as object tracking, event identification, and behavior analysis. Most conventional foreground object detection ...