CPHD filters with unknown quadratic clutter generators
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
© 2015 SPIE. Previous research has produced CPHD filters that can detect and track multiple targets in unknown, dynamically changing clutter. The.first such filters employed Poisson clutter generators and, as a result, were combinatorially complex. Recent research has shown that replacing the Poisson clutter generators with Bernoulli clutter generators results in computationally tractable CPHD filters. However, Bernoulli clutter generators are insufficiently complex to model real-world clutter with high accuracy, because they are statistically first-degree. This paper addresses the derivation and implementation of CPHD filters when first-degree Bernoulli clutter generators are replaced by second-degree quadratic clutter generators. Because these filters are combinatorially second-order, they are more easily approximated. They can also be implemented in exact closed form using beta-Gaussian mixture (BGM) or Dirichlet-Gaussian mixture (DGM) techniques.
Related items
Showing items related by title, author, creator and subject.
-
Mahler, Ronald (2014)© 2014 IEEE. In previous publications the author introduced CPHD filters designed to detect and track multiple targets in unknown, dynamically changing clutter backgrounds. The first such filters employed Poisson clutter ...
-
Mahler, Ronald (2012)This paper describes a general approach for deriving PHD/CPHD filters that must estimate the background clutter process, rather than being provided with it a priori. I first derive general time- and measurementupdate ...
-
Mahler, R.; Vo, Ba Tuong; Vo, Ba-Ngu (2011)In Bayesian multi-target filtering, we have to contend with two notable sources of uncertainty, clutter and detection. Knowledge of parameters such as clutter rate and detection profile are of critical importance in ...