Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    (0D/3D) MoS2 on porous graphene as catalysts for enhanced electrochemical hydrogen evolution

    Access Status
    Fulltext not available
    Authors
    Liu, Y.
    Zhu, Y.
    Fan, X.
    Wang, Shaobin
    Li, Y.
    Zhang, F.
    Zhang, G.
    Peng, W.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Liu, Y. and Zhu, Y. and Fan, X. and Wang, S. and Li, Y. and Zhang, F. and Zhang, G. et al. 2017. (0D/3D) MoS2 on porous graphene as catalysts for enhanced electrochemical hydrogen evolution. Carbon. 121: pp. 163-169.
    Source Title
    Carbon
    DOI
    10.1016/j.carbon.2017.05.092
    ISSN
    0008-6223
    School
    Department of Chemical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150103026
    URI
    http://hdl.handle.net/20.500.11937/55802
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 Elsevier Ltd A new composite material consisting of 0D MoS 2 nanodots and 3D MoS 2 nano-flowers grown on porous reduced graphene oxide (P-rGO) was synthesized via a two-step process. The P-rGO with a surface area of 759 m 2 g -1 was obtained by CO 2 activation of reduced graphene oxide (rGO) at 800 °C. MoS 2 was then grown on the P-rGO under hydrothermal conditions. Compared to the nonactivated rGO, P-rGO has functional pores for deposition of MoS 2 nanodots and less charge transfer resistance, which can provide more active sites for hydrogen generation, thus leading to the improved activity of (0D/3D) MoS 2 /P-rGO in hydrogen evolution reaction (HER). The overpotential of (0D/3D) MoS 2 /P-rGO was only ~150 mV vs. RHE, and the corresponding Tafel slope was ~56 mV Dec -1 , which is comparable to most of the present MoS 2 /Graphene HER catalysts. The (0D/3D) MoS 2 /P-rGO exhibits as an efficient noble metal free HER catalyst, and has great potential for the electrochemical hydro gen production.

    Related items

    Showing items related by title, author, creator and subject.

    • Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials
      Wang, Shaobin; Sun, Hongqi; Ang, Ha-Ming; Tade, Moses (2013)
      Pollution of air, water and soil is a worldwide issue for the eco-environment and human society. Removal of various pollutants including inorganic and organic compounds from the environment is a big challenge. Adsorption ...
    • Recent advances in graphene-derived materials for biomedical waste treatment
      Obayomi, Kehinde Shola; Lau, Sie Yon; Mayowa, I.E.; Danquah, M.K.; Jianhua, Z.; Chiong, Tung ; Meunier, L.; Rahman, M.M. (2023)
      Untreated biomedical wastes discharged into water bodies, primarily by hospitals and health care facilities; release a wide range of contaminants that poses danger to human health and environmental sustainability. Therefore, ...
    • Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications
      Wang, S.; Jiang, San Ping; Wang, X. (2011)
      An effective synthesis strategy of hybrid metal (PtRu)/metal oxide (SnO2) nanoparticles on graphenenanocomposites is developed using a microwave-assisted one-pot reaction process. The mixture of ethylene glycol (EG) and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.