Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications

    Access Status
    Fulltext not available
    Authors
    Wang, S.
    Jiang, San Ping
    Wang, X.
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, S. and Jiang, S.P. and Wang, X. 2011. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochimica Acta. 56: pp. 3338-3344.
    Source Title
    Electrochimica Acta
    ISSN
    00134686
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/6963
    Collection
    • Curtin Research Publications
    Abstract

    An effective synthesis strategy of hybrid metal (PtRu)/metal oxide (SnO2) nanoparticles on graphenenanocomposites is developed using a microwave-assisted one-pot reaction process. The mixture of ethylene glycol (EG) and water is used as both solvent and reactant. In the reaction system for the synthesis of SnO2/graphene nanocomposite, EG not only reduces graphene oxide (GO) to graphene, but also results in the formation of SnO2 facilitated by the presence of a small amount of water. On the other hand, in the reaction system for preparation of PtRu/graphene nanocomposites, EG acts as solvent and reducing agent for reduction of PtRu nanoparticles from their precursors and reduction of graphene from graphene oxide. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) characterizations confirm the feasibility of the microwave-assisted reaction system to simultaneously reduce graphene oxide and to form SnO2 or PtRu nanoparticles. The as-synthesized SnO2/graphene hybrid composites show a much higher supercapacitance than the pure graphene, and the as-prepared PtRu/graphene show much better electrocatalytic activity for methanol oxidation compared to the commercial E-TEK PtRu/C electrocatalysts.

    Related items

    Showing items related by title, author, creator and subject.

    • Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis
      Zhao, B.; Zheng, Y.; Ye, F.; Deng, X.; Xu, X.; Liu, M.; Shao, Zongping (2015)
      Composites consisting of nanoparticles of iron oxides and graphene have attracted considerable attention in numerous applications; however, the synthesis methods used to achieve superior functionalities are often complex ...
    • Metal-Free Carbocatalysis in Advanced Oxidation Reactions
      Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin (2018)
      Conspectus Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free ...
    • A General Method for Constructing Two-Dimensional Layered Mesoporous Mono- and Binary-Transition-Metal Nitride/Graphene as an Ultra-Efficient Support to Enhance Its Catalytic Activity and Durability for Electrocatalytic Application
      Liu, B.; Huo, L.; Si, R.; Liu, Jian; Zhang, J. (2016)
      © 2016 American Chemical Society. We constructed a series of two-dimensional (2D) layered mesoporous mono- and binary-transition-metal nitride/graphene nanocomposites (TMN/G, TM = Ti, Cr, W, Mo, TiCr, TiW, and TiMo) via ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.