Biocompatibility and cellular uptake mechanisms of poly(N -isopropylacrylamide) in different cells
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© SAGE Publications. Thermosensitive poly(N-isopropylacrylamide) is widely used in various biomedical applications including drug delivery systems, gene delivery systems, switching devices, sensors, and diagnostic assays. To promote these clinical applications, it is essential to have a comprehensive understanding of the biosafety of poly(N-isopropylacrylamide) and the interaction of poly(N-isopropylacrylamide) with different cell lines, which has little research until now. In this work, we evaluated the biocompatibility of poly(N-isopropylacrylamide) including cell viability, nitric oxide production, and apoptosis of macrophages RAW264.7, human bronchial epithelial cells, A549, and human umbilical vein endothelial cells in the presence of poly(N-isopropylacrylamide). We have also examined the cellular uptake mechanisms of poly(N-isopropylacrylamide) using endocytic inhibitors and insighted into the intracellular co-localization of poly(N-isopropylacrylamide) using confocal laser scanning microscope. The results showed that poly(N-isopropylacrylamide) had good biocompatibility and could be internalized by these cells. It is macropinocytosis that poly(N-isopropylacrylamide) could be internalized in RAW264.7 cells and caveolae-mediated endocytosis in human bronchi al epithelial cells, A549, and human umbilical vein endothelial cells. In addition, we also evidenced that intracellular poly(N-isopropylacrylamide) was co-localized with lysosome. The study provided important information for the development and clinical applications of poly(N-isopropylacrylamide) in the biomedical field.
Related items
Showing items related by title, author, creator and subject.
-
Roth, P.; Davis, T.; Lowe, Andrew (2012)Doubly thermoresponsive polymers consisting of a poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) block displaying UCST behavior in alcohols and a block of poly(N-isopropylacrylamide) (PNIPAM) or ...
-
Shi, Bo-Hui; Yang, L.; Fan, S.; Lou, Xia (2017)Porous hydrogel particles of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N-isopropylacrylamide) (PNIPAAm) with varying water absorbability and quantities were investigated upon their ability and stability to support ...
-
Liu, Jian; An, T.; Chen, Z.; Wang, Z.; Zhou, H.; Fan, T.; Zhang, D.; Antonietti, M. (2017)© The Royal Society of Chemistry 2017. Graphitic carbon nitride (g-C3N4) has emerged as an active visible-light-driven photo(electro)catalyst. However, the rediscovery of g-C3N4has also spurred enormous interest in other, ...