Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture

    Access Status
    Fulltext not available
    Authors
    Cheng, Liang
    Cord-Ruwisch, R.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Cheng, L. and Cord-Ruwisch, R. 2013. Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture. Journal of Industrial Microbiology and Biotechnology. 40 (10): pp. 1095-1104.
    Source Title
    Journal of Industrial Microbiology and Biotechnology
    DOI
    10.1007/s10295-013-1310-6
    ISSN
    1367-5435
    School
    Department of Civil Engineering
    URI
    http://hdl.handle.net/20.500.11937/56070
    Collection
    • Curtin Research Publications
    Abstract

    In general, bioprocesses can be subdivided into naturally occurring processes, not requiring sterility (e.g., beer brewing, wine making, lactic acid fermentation, or biogas digestion) and other processes (e.g., the production of enzymes and antibiotics) that typically require a high level of sterility to avoid contaminant microbes overgrowing the production strain. The current paper describes the sustainable, non-sterile production of an industrial enzyme using activated sludge as inoculum. By using selective conditions (high pH, high ammonia concentration, and presence of urea) for the target bacterium, highly active ureolytic bacteria, physiologically resembling Sporosarcina pasteurii were reproducibly enriched and then continuously produced via chemostat operation of the bioreactor. When using a pH of 10 and about 0.2 M urea in a yeast extract-based medium, ureolytic bacteria developed under aerobic chemostat operation at hydraulic retention times of about 10 h with urease levels of about 60 µmol min -1 ml -1 culture. For cost minimization at an industrial scale the costly protein-rich yeast extract medium could be replaced by commercial milk powder or by lysed activated sludge. Glutamate, molasses, or glucose-based media did not result in the enrichment of ureolytic bacteria by the chemostat. The concentration of intracellular urease was sufficiently high such that the produced raw effluent from the reactor could be used directly for biocementation in the field. © 2013 Society for Industrial Microbiology and Biotechnology.

    Related items

    Showing items related by title, author, creator and subject.

    • Investigation of the impact of nitrate injection to control sourcing problem in oil reservoir : benefit and side effects on steel materials
      Halim, Amalia Yunita (2011)
      The successful control of reservoir souring by nitrate injection has been well documented in the literature. Recent interest has centred on how nitrate application can increase the corrosion risk in pipelines and metal ...
    • Application of a dense gas technique for sterilizing soft biomaterials
      Karajanagi, S.; Yoganathan, R.; Mammucari, R.; Park, H.; Cox, J.; Zeitels, S.; Langer, R.; Foster, Neil (2011)
      Sterilization of soft biomaterials such as hydrogels is challenging because existing methods such as gamma irradiation, steam sterilization, or ethylene oxide sterilization, while effective at achieving high sterility ...
    • Surface Percolation for Soil Improvement by Biocementation Utilizing In Situ Enriched Indigenous Aerobic and Anaerobic Ureolytic Soil Microorganisms
      Cheng, Liang; Shahin, Mohamed; Cord-Ruwisch, R. (2017)
      The use of biocementation via microbially induced carbonate precipitation (MICP) for improving the mechanical properties of weak soils in the laboratory has gained increased attention in recent years. This study proposes ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.