Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Construction of p-n heterojunction �-Bi2O3/BiVO4 nanocomposite with improved photoinduced charge transfer property and enhanced activity in degradation of ortho-dichlorobenzene

    Access Status
    Fulltext not available
    Authors
    Sun, J.
    Li, X.
    Zhao, Q.
    Tade, Moses
    Liu, Shaomin
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Sun, J. and Li, X. and Zhao, Q. and Tade, M. and Liu, S. 2017. Construction of p-n heterojunction �-Bi2O3/BiVO4 nanocomposite with improved photoinduced charge transfer property and enhanced activity in degradation of ortho-dichlorobenzene. Applied Catalysis B: Environmental. 219: pp. 259-268.
    Source Title
    Applied Catalysis B: Environmental
    DOI
    10.1016/j.apcatb.2017.07.052
    ISSN
    0926-3373
    Faculty
    Faculty of Science and Engineering
    URI
    http://hdl.handle.net/20.500.11937/56145
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 Elsevier B.V. To achieve efficient conversion of solar to chemical energy in photocatalysis, development of visible-light-induced catalysts with high charge carrier mobility and superior activity is essential. In this work, a novel ß-Bi 2 O 3 /BiVO 4 nanocomposite with p-n heterojuction structure, which is assembled by interconnected quantum dots, has been successfully constructed through a facile approach. The structural and optical properties of the as-prepared materials were comparatively characterized. Steady-state and transient-state photoluminescence spectra demonstrate that the photo-induced charge carriers in ß-Bi 2 O 3 /BiVO 4 nanocomposite display higher separation and much longer lifetime than those in individual BiVO 4 samples, which is attributed to the formation of efficient interfacial electric field between ß-Bi 2 O 3 and BiVO 4 . The photocatalytic performance of the samples was explored by the degradation of ortho-dichlorobenzene (o-DCB). Electron spin resonance examinations confirmed that much more superoxide radicals were generated in the system of ß-Bi 2 O 3 /BiVO 4 nanocomposite, which could be mainly responsible for the outstanding activity. In addition, the adsorption and oxidation of o-DCB over the as-prepared materials were studied by in situ FTIR spectroscopy to investigate the nature of surface intermediates formed on the catalysts. To clarify charge migration route, a detailed photocatalytic mechanism in terms of the energy band structures is proposed.

    Related items

    Showing items related by title, author, creator and subject.

    • Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells
      Tang, H.; Pan, M.; Jiang, San ping (2011)
      A highly ordered inorganic electrolyte based on 12-tungstophosphoric acid (H3PW12O40, abbreviated as HPW or PWA)–silica mesoporous nanocomposite was synthesized through a facile one-step self-assembly between the positively ...
    • Synthesis of polymeric nanocomposite membranes for aqueous and non-aqueous media
      Rajaeian, Babak (2012)
      Thin film composite (TFC) membranes have long been used by many large-scale applications (i.e., water and wastewater treatment). Recently, conventional polymeric TFC membranes are facing with short longevity due to high ...
    • Carbon nanotube and graphene nanosheet co-modified LiFePO4nanoplate composite cathode material by a facile polyol process
      Wu, G.; Zhou, Y.; Shao, Zongping (2013)
      LiFePO4 nanoplate based composite cathode materials with 5 wt% multi-walled carbon nanotubes and 1 wt% graphene nanosheets have been prepared via a single-step polyol process under low temperature, without using any inert ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.