Model-based classification and novelty detection for point pattern data
Access Status
Fulltext not available
Authors
Vo, Ba Tuong
Tran, N.
Phung, D.
Vo, Ba-Ngu
Date
2017Type
Conference Paper
Metadata
Show full item recordCitation
Vo, B.T. and Tran, N. and Phung, D. and Vo, B. 2017. Model-based classification and novelty detection for point pattern data, pp. 2622-2627.
Source Title
Proceedings - International Conference on Pattern Recognition
ISBN
School
Department of Electrical and Computer Engineering
Collection
Abstract
© 2016 IEEE. Point patterns are sets or multi-sets of unordered elements that can be found in numerous data sources. However, in data analysis tasks such as classification and novelty detection, appropriate statistical models for point pattern data have not received much attention. This paper proposes the modelling of point pattern data via random finite sets (RFS). In particular, we propose appropriate likelihood functions, and a maximum likelihood estimator for learning a tractable family of RFS models. In novelty detection, we propose novel ranking functions based on RFS models, which substantially improve performance.
Related items
Showing items related by title, author, creator and subject.
-
Pratapa, Suminar (2003)Crystallite (or grain) size and strain within a polycrystalline material may have a profound influence on its physical properties, eg. the fracture toughness, wear and thermal shock resistance. A diffraction pattern for ...
-
Vo, Ba-Ngu; Dam, N.; Phung, D.; Tran, Q.; Vo, B. (2018)This article proposes a framework for model-based point pattern learning using point process theory. Likelihood functions for point pattern data derived from point process theory enable principled yet conceptually transparent ...
-
Robinson, Todd Peter (2008)Invasive plants pose serious threats to economic, social and environmental interests throughout the world. Developing strategies for their management requires a range of information that is often impractical to collect ...