Show simple item record

dc.contributor.authorLim, King Hann
dc.contributor.authorSeng, Kah Phooi
dc.contributor.authorAng, Li-Minn
dc.date.accessioned2017-01-30T10:47:19Z
dc.date.available2017-01-30T10:47:19Z
dc.date.created2013-03-10T20:00:28Z
dc.date.issued2012
dc.identifier.citationLim, King Hann and Seng, Kah Phooi and Ang, Li-Minn. 2012. River Flow Lane Detection and Kalman Filtering-based B-spline Lane Tracking. International Journal of Vehicular Technology. Article ID 465819, 10 pages.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/5625
dc.identifier.doi10.1155/2012/465819
dc.description.abstract

A novel lane detection technique using adaptive line segment and river flow method is proposed in this paper to estimate driving lane edges. A Kalman filtering-based B-spline tracking model is also presented to quickly predict lane boundaries in consecutive frames. Firstly, sky region and road shadows are removed by applying a regional dividing method and road region analysis, respectively. Next, the change of lane orientation is monitored in order to define an adaptive line segment separating the region into near and far fields. In the near field, a 1D Hough transform is used to approximate a pair of lane boundaries. Subsequently, river flow method is applied to obtain lane curvature in the far field. Once the lane boundaries are detected, a B-spline mathematical model is updated using a Kalman filter to continuously track the road edges. Simulation results show that the proposed lane detection and tracking method has good performance with low complexity.

dc.publisherHindawi
dc.titleRiver Flow Lane Detection and Kalman filtering-based B-spline Lane Tracking
dc.typeJournal Article
dcterms.source.volume2012
dcterms.source.titleInternational Journal of Vehicular Technology
curtin.departmentSarawak Malaysia
curtin.accessStatusOpen access via publisher


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record