An approximate CPHD filter for superpositional sensors
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
Most multitarget tracking algorithms, such as JPDA, MHT, and the PHD and CPHD filters, presume the following measurement model: (a) targets are point targets, (b) every target generates at most a single measurement, and (c) any measurement is generated by at most a single target. However, the most familiar sensors, such as surveillance and imaging radars, violate assumption (c). This is because they are actually superpositional-that is, any measurement is a sum of signals generated by all of the targets in the scene. At this conference in 2009, the first author derived exact formulas for PHD and CPHD filters that presume general superpositional measurement models. Unfortunately, these formulas are computationally intractable. In this paper, we modify and generalize a Gaussian approximation technique due to Thouin, Nannuru, and Coates to derive a computationally tractable superpositional-CPHD filter. Implementation requires sequential Monte Carlo (particle filter) techniques. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Related items
Showing items related by title, author, creator and subject.
-
Papi, Francesco; Kim, Du Yong (2015)In this paper we present a general solution for multi-target tracking with superpositional measurements. Measurements that are functions of the sum of the contributions of the targets present in the surveillance area are ...
-
Nannuru, S.; Coates, M.; Mahler, Ronald (2013)In this paper we derive computationally-tractable approximations of the Probability Hypothesis Density (PHD) and Cardinalized Probability Hypothesis Density (CPHD) filters for superpositional sensors with Gaussian noise. ...
-
Ristic, B.; Clark, D.; Vo, Ba-Ngu; Vo, Ba Tuong (2012)The standard formulation of the probability hypothesis density (PHD) and cardinalised PHD (CPHD) filters assumes that the target birth intensity is known a priori. In situations where the targets can appear anywhere in ...