A multiple model probability hypothesis density tracker for time-lapse cell microscopy sequences.
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Quantitative analysis of the dynamics of tiny cellular and subcellular structures in time-lapse cell microscopy sequences requires the development of a reliable multi-target tracking method capable of tracking numerous similar targets in the presence of high levels of noise, high target density, maneuvering motion patterns and intricate interactions. The linear Gaussian jump Markov system probability hypothesis density (LGJMS-PHD) filter is a recent Bayesian tracking filter that is well-suited for this task. However, the existing recursion equations for this filter do not consider a state-dependent transition probability matrix. As required in many biological applications, we propose a new closed-form recursion that incorporates this assumption and introduce a general framework for particle tracking using the proposed filter. We apply our scheme to multi-target tracking in total internal reflection fluorescence microscopy (TIRFM) sequences and evaluate the performance of our filter against the existing LGJMS-PHD and IMM-JPDA filters.
Related items
Showing items related by title, author, creator and subject.
-
Mallick, M.; Rubin, S.; Vo, Ba-Ngu (2013)Space object (satellite or space-debris) tracking (SOT) has not received much attention in the Information Fusion community, although the first Fusion conference was held in 1998. A special session on SOT was organized ...
-
Ristic, B.; Vo, Ba-Ngu; Clark, D.; Vo, Ba Tuong (2011)Performance evaluation of multi-target tracking algorithms is of great practical importance in the design, parameter optimization and comparison of tracking systems. The goal of performance evaluation is to measure the ...
-
Ristic, B.; Vo, Ba Tuong; Vo, Ba-Ngu; Farina, A. (2013)Bernoulli filters are a class of exact Bayesian filters for non-linear/non-Gaussian recursive estimation of dynamic systems, recently emerged from the random set theoretical framework. The common feature of Bernoulli ...