A Tutorial on Bernoulli Filters: Theory, Implementation and Applications
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
Bernoulli filters are a class of exact Bayesian filters for non-linear/non-Gaussian recursive estimation of dynamic systems, recently emerged from the random set theoretical framework. The common feature of Bernoulli filters is that they are designed for stochastic dynamic systems which randomly switch on and off. The applications are primarily in target tracking, where the switching process models target appearance or disappearance from the surveillance volume. The concept, however, is applicable to a range of dynamic phenomena, such as epidemics, pollution, social trends, etc. Bernoulli filters in general have no analytic solution and are implemented as particle filters or Gaussian sum filters. This tutorial paper reviews the theory of Bernoulli filters as well as their implementation for different measurement models. The theory is backed up by applications in sensor networks, bearings-only tracking, passive radar/sonar surveillance, visual tracking, monitoring/prediction of an epidemic and tracking using natural language statements. More advanced topics of smoothing, multi-target detection/tracking, parameter estimation and sensor control are briefly reviewed with pointers for further reading.
Related items
Showing items related by title, author, creator and subject.
-
Jones, B.; Vo, Ba Tuong; Vo, Ba-Ngu (2016)Space-object tracking systems require robust and accurate methods of multi-target state estimation and prediction. This paper presents the application of labeled multi-Bernoulli filters for space-object tracking, and ...
-
Mallick, M.; Rubin, S.; Vo, Ba-Ngu (2013)Space object (satellite or space-debris) tracking (SOT) has not received much attention in the Information Fusion community, although the first Fusion conference was held in 1998. A special session on SOT was organized ...
-
Kim, Du Yong; Jeon, M. (2015)To achieve reliable multi-object filtering in vision application, it is of great importance to determine appropriate model parameters. Parameters such as motion and measurement noise covariance can be chosen based on the ...