Regeneration of LiAlH4 at sub-ambient temperatures studied by multinuclear NMR spectroscopy
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Lithium aluminium hydride (LiAlH 4 ) has long been identified as a viable hydrogen storage material, due to its high attainable theoretical gravimetric hydrogen capacity of 7.9 wt%. The main impediment to its viability for technical application is its limitation for regeneration. Recently, solvent-mediated regeneration has been achieved at room temperature using dimethyl-ether, Me 2 O, although the reaction pathway has not been determined. This in situ multinuclear NMR spectroscopy study ( 27 Al and 7 Li) has confirmed that the Me 2 O-mediated, direct synthesis of LiAlH 4 occurs by a one-step process in which LiAlH 4 ·xMe 2 O is formed, and does not involve Li 3 AlH 6 or any other intermediates. Hydrogenation has been shown to occur below ambient temperatures (at 0 °C) for the first time, and the importance of solvate adducts formed during the process is demonstrated.
Related items
Showing items related by title, author, creator and subject.
-
Wang, L.; Rawal, A.; Quadir, Md Zakaria; Aguey-Zinsou, K. (2017)Lithium aluminium hydride (LiAlH4) is a promising hydrogen storage material with a storage capacity of 10.6 mass % H2. However, its practical use is hampered by the lack of direct rehydrogenation routes. In this study, ...
-
Paskevicius, Mark; Sheppard, Drew; Buckley, Craig (2009)A mechanochemical synthesis process has been used to synthesise alane (AlH3) nanoparticles. The alane is synthesised via a chemical reaction between lithium alanate (LiAlH4) and aluminium chloride (AlCl3) at room temperature ...
-
Murshidi, Julie Andrianny (2012)Concerns about the impact that fossil fuels have on the environment and their increasing price to the consumer have led to research being undertaken to evaluate and refine other energy carriers that will be comparable to ...