Nanoconfined lithium aluminium hydride (LiAlH4) and hydrogen reversibility
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Lithium aluminium hydride (LiAlH4) is a promising hydrogen storage material with a storage capacity of 10.6 mass % H2. However, its practical use is hampered by the lack of direct rehydrogenation routes. In this study, we report on the confinement of LiAlH4into the nanoporosity of a high surface area graphite resulting in a remarkable improvement of its hydrogen storage properties. Nanoconfined LiAlH4started hydrogen desorption near 135 °C and after full dehydrogenation at 300 °C limited rehydrogenation was observed at the same temperature and 7 MPa of hydrogen pressure. Rehydrogenation took place through the formation of Li3AlH6with some limited rehydrogenation back to LiAlH4indicating the existence of different (de)hydrogenation paths upon nanoconfinement as compared to the known dehydrogenation path of bulk LiAlH4.
Related items
Showing items related by title, author, creator and subject.
-
Javadian, P.; Sheppard, Drew; Buckley, C.; Jensen, T. (2016)Nanoconfinement of 2LiBH4-NaAlH4 into a mesoporous carbon aerogel scaffold with a pore size, BET surface area and total pore volume of Dmax = 30 nm, SBET = 689 m2/g and Vtot = 1.21 mL/g, respectively is investigated. ...
-
Saldan, I.; Hino, S.; Humphries, Terry; Zavorotynska, O.; Chong, M.; Jensen, C.; Deledda, S.; Hauback, B. (2014)The decomposition and rehydrogenation of ?-Mg(BH4)2 ball milled together with 2 mol % of Ni-based additives, Ninano, NiCl2, NiF2, and Ni3B, has been investigated during one hydrogen desorption-absorption cycle. Under the ...
-
Humphries, Terry; Birkmire, D.; McGrady, G.; Hauback, B.; Jensen, C. (2017)Lithium aluminium hydride (LiAlH 4 ) has long been identified as a viable hydrogen storage material, due to its high attainable theoretical gravimetric hydrogen capacity of 7.9 wt%. The main impediment to its viability ...