High durability and hydroxide ion conducting pore-filled anion exchange membranes for alkaline fuel cell applications
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
A series of composite anion exchange membranes are successfully synthesized by thermal polymerization of chloromethyl monomer in a porous polyethylene (PE) substrate followed by amination with trimethylamine for alkaline anion exchange membrane fuel cells (AAEMFCs) application. These membranes exhibit excellent alkaline durability and high ionic conductivity. The resulting alkaline anion exchange membranes (AAEMs) show a hydroxide conductivity up to 0.057 S cm−1 at 30 °C in deionized water and do not exhibit significant changes in the ionic conductivity and the IEC in 1 M KOH solution at 60 °C for around 1000 h. The maximum power density of 370 mW cm−2 is obtained at 50 °C for H2/O2 AAEMFC.
Related items
Showing items related by title, author, creator and subject.
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
-
Yang, D.; Yu, H.; Li, G.; Zhao, Y.; Liu, Y.; Zhang, C.; Song, W.; Shao, Zongping (2014)The electrode fabrication and resulting microstructure are the main determinates of the performance of alkaline anion exchange membrane fuel cells (AAEMFCs). In the present work, the electrode microstructure is adjusted ...
-
Zhang, J.; Liu, Jian; Lu, S.; Zhu, H.; Aili, D.; De Marco, Roland; Xiang, Y.; Forsyth, M.; Li, Q.; Jiang, S. (2017)© 2017 American Chemical Society. As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced ...