Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells

    Access Status
    Open access via publisher
    Authors
    Zhang, J.
    Liu, Jian
    Lu, S.
    Zhu, H.
    Aili, D.
    De Marco, Roland
    Xiang, Y.
    Forsyth, M.
    Li, Q.
    Jiang, S.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhang, J. and Liu, J. and Lu, S. and Zhu, H. and Aili, D. and De Marco, R. and Xiang, Y. et al. 2017. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells. ACS Applied Materials and Interfaces. 9 (37): pp. 31922-31930.
    Source Title
    ACS Applied Materials and Interfaces
    DOI
    10.1021/acsami.7b09591
    Additional URLs
    https://orbit.dtu.dk/en/publications/ion-exchange-induced-selective-etching-for-the-synthesis-of-amino
    ISSN
    1944-8244
    School
    Department of Chemical Engineering
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150102025
    http://purl.org/au-research/grants/arc/DP150102044
    URI
    http://hdl.handle.net/20.500.11937/63314
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 American Chemical Society. As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH 2 -meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH - in the NH 2 -meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA-NH 2 -HMS nanoparticles are dispersed in the poly(ether sulfone)-polyvinylpyrrolidone (PES-PVP) matrix, forming a hybrid PWA-NH 2 -HMS/PES-PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA-NH 2 -HMS showed an enhanced proton conductivity of 0.175 S cm -1 and peak power density of 420 mW cm -2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH 2 -HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.

    Related items

    Showing items related by title, author, creator and subject.

    • Amino-functionalized mesoporous silica based polyethersulfone-polyvinylpyrrolidone composite membranes for elevated temperature proton exchange membrane fuel cells
      Zhang, Jin; Lu, S.; Zhu, H.; Chen, Kongfa; Xiang, Y.; Liu, Jian; Forsyth, M.; Jiang, San Ping (2016)
      It is important to find alternative membranes to the state-of-the-art polybenzimidazole based high temperature proton exchange membranes with high proton conductivity at elevated temperature but with simple synthesis ...
    • Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells
      Zeng, J.; Zhou, Y.; Li, L.; Jiang, San Ping (2011)
      A novel proton exchange membrane using phosphotungstic acid (HPW) as proton carrier and cubic bicontinuous Ia3d mesoporous silica (meso-silica) as framework material is successfully developed as proton exchange membranes ...
    • Anhydrous phosphoric acid functionalized sintered mesoporous silica nanocomposite proton exchange membranes for fuel cells
      Zeng, J.; He, B.; Lamb, K.; De Marco, Roland; Shen, P.; Jiang, San Ping (2013)
      A novel inorganic proton exchange membrane based on phosphoric acid (PA)-functionalized sintered mesoporous silica, PA-meso-silica, has been developed and investigated. After sintering at 650 °C, the meso-silica powder ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.