Show simple item record

dc.contributor.authorJames, C.
dc.contributor.authorAlvarez-Muñiz, J.
dc.contributor.authorBray, J.
dc.contributor.authorBuitink, S.
dc.contributor.authorDagkesamanskii, R.
dc.contributor.authorEkers, Ronald
dc.contributor.authorFalcke, H.
dc.contributor.authorGayley, K.
dc.contributor.authorHuege, T.
dc.contributor.authorMevius, M.
dc.contributor.authorMutel, R.
dc.contributor.authorScholten, O.
dc.contributor.authorSpencer, R.
dc.contributor.authorTer Veen, S.
dc.contributor.authorWinchen, T.
dc.date.accessioned2017-09-27T10:21:59Z
dc.date.available2017-09-27T10:21:59Z
dc.date.created2017-09-27T09:48:15Z
dc.date.issued2017
dc.identifier.citationJames, C. and Alvarez-Muñiz, J. and Bray, J. and Buitink, S. and Dagkesamanskii, R. and Ekers, R. and Falcke, H. et al. 2017. Overview of lunar detection of ultra-high energy particles and new plans for the SKA.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/57019
dc.identifier.doi10.1051/epjconf/201713504001
dc.description.abstract

© 2017 The Authors, published by EDP Sciences. The lunar technique is a method for maximising the collection area for ultra-high-energy (UHE) cosmic ray and neutrino searches. The method uses either ground-based radio telescopes or lunar orbiters to search for Askaryan emission from particles cascading near the lunar surface. While experiments using the technique have made important advances in the detection of nanosecond-scale pulses, only at the very highest energies has the lunar technique achieved competitive limits. This is expected to change with the advent of the Square Kilometre Array (SKA), the low-frequency component of which (SKA-low) is predicted to be able to detect an unprecedented number of UHE cosmic rays. In this contribution, the status of lunar particle detection is reviewed, with particular attention paid to outstanding theoretical questions, and the technical challenges of using a giant radio array to search for nanosecond pulses. The activities of SKA's High Energy Cosmic Particles Focus Group are described, as is a roadmap by which this group plans to incorporate this detection mode into SKA-low observations. Estimates for the sensitivity of SKA-low phases 1 and 2 to UHE particles are given, along with the achievable science goals with each stage. Prospects for near-future observations with other instruments are also described.

dc.titleOverview of lunar detection of ultra-high energy particles and new plans for the SKA
dc.typeConference Paper
dcterms.source.volume135
dcterms.source.titleEPJ Web of Conferences
dcterms.source.seriesEPJ Web of Conferences
dcterms.source.isbn9782759890156
curtin.departmentCurtin Institute of Radio Astronomy (Engineering)
curtin.accessStatusOpen access via publisher


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record