Depth of Origin of the Peak (Inner) Ring in Lunar Impact Basins
Citation
Source Title
ISSN
School
Remarks
Copyright © 2017 The American Geophysical Union
Collection
Abstract
Numerical modeling of the peak-ring basin formation showed that the peak-ring forms from the material that is part of the central uplift outwardly thrust over the inwardly collapsing transient crater rim. Simulations of the lunar basin formation showed that the peak or inner ring in peak ring or multiring basins, respectively, is composed of the overturned crust and deep-seated material, possibly from the upper mantle. Numerical impact simulations were used to trace the depth of origin of material exposed within the peak (or inner) ring. We estimate the scaling trends between basin size and the depth of origin of material exposed within the ring. We also report on the likely crust, mantle, and projectile abundances exposed within the ring. Quantifying the excavation depths during the formation of the peak or inner ring provides a step toward understanding the lunar crust and mantle stratigraphy.
Related items
Showing items related by title, author, creator and subject.
-
Christeson, G.; Gulick, S.; Morgan, J.; Gebhardt, C.; Kring, D.; Le Ber, E.; Lofi, J.; Nixon, C.; Poelchau, M.; Rae, A.; Rebolledo-Vieyra, M.; Riller, U.; Schmitt, D.; Wittmann, A.; Bralower, T.; Chenot, E.; Claeys, P.; Cockell, C.; Coolen, Marco; Ferrière, L.; Green, S.; Goto, K.; Jones, H.; Lowery, C.; Mellett, C.; Ocampo-Torres, R.; Perez-Cruz, L.; Pickersgill, A.; Rasmussen, C.; Sato, H.; Smit, J.; Tikoo, S.; Tomioka, N.; Urrutia-Fucugauchi, J.; Whalen, M.; Xiao, L.; Yamaguchi, K. (2018)© 2018 Elsevier B.V. Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, ...
-
Lemelin, M.; Lucey, P.; Miljkovic, Katarina; Gaddis, L.; Hare, T.; Ohtake, M. (2018)The innermost ring in impact basins exposes material originating from various depths, and can be used to study the composition of the lunar crust with depth. In this study, we conduct quantitative mineralogical analyses ...
-
Neumann, G.; Zuber, M.; Wieczorek, M.; Head, J.; Baker, D.; Solomon, S.; Smith, D.; Lemoine, F.; Mazarico, E.; Sabaka, T.; Goossens, S.; Melosh, H.; Phillips, R.; Asmar, S.; Konopliv, A.; Williams, J.; Sori, M.; Soderblom, J.; Miljkovic, Katarina; Andrews-Hanna, J.; Nimmo, F.; Kiefer, W. (2015)Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, ...