Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography—A case study for the Moon
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
©2017. American Geophysical Union. All Rights Reserved. Theoretically, spherical harmonic (SH) series expansions of the external gravitational potential are guaranteed to converge outside the Brillouin sphere enclosing all field-generating masses. Inside that sphere, the series may be convergent or may be divergent. The series convergence behavior is a highly unstable quantity that is little studied for high-resolution mass distributions. Here we shed light on the behavior of SH series expansions of the gravitational potential of the Moon. We present a set of systematic numerical experiments where the gravity field generated by the topographic masses is forward-modeled in spherical harmonics and with numerical integration techniques at various heights and different levels of resolution, increasing from harmonic degree 90 to 2160 (~61 to 2.5 km scales). The numerical integration is free from any divergence issues and therefore suitable to reliably assess convergence versus divergence of the SH series. Our experiments provide unprecedented detailed insights into the divergence issue. We show that the SH gravity field of degree-180 topography is convergent anywhere in free space. When the resolution of the topographic mass model is increased to degree 360, divergence starts to affect very high degree gravity signals over regions deep inside the Brillouin sphere. For degree 2160 topography/gravity models, severe divergence (with several 1000 mGal amplitudes) prohibits accurate gravity modeling over most of the topography. As a key result, we formulate a new hypothesis to predict divergence: if the potential degree variances show a minimum, then the SH series expansions diverge somewhere inside the Brillouin sphere and modeling of the internal potential becomes relevant.
Related items
Showing items related by title, author, creator and subject.
-
Bucha, B.; Hirt, C.; Kuhn, Michael (2018)Recent numerical studies on external gravity field modelling show that external spherical harmonic series may diverge near or on planetary surfaces. This paper investigates an alternative solution that is still based on ...
-
Hirt, Christian; Rexer, M.; Scheinert, M.; Pail, R.; Claessens, Sten; Holmes, S. (2015)The current high-degree global geopotential models EGM2008 and EIGEN-6C4 resolve gravity field structures to ~10 km spatial scales over most parts of the of Earth’s surface. However, a notable exception is continental ...
-
Hirt, Christian; Rexer, M.; Claessens, Sten (2015)ESA (European Space Agency) has released a series of new-generation Earth gravity field models computed from gradiometry and GPS observations carried out aboard the GOCE (Gravity field and Ocean Circulation Explorer) ...