Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Divergence-free spherical harmonic gravity field modelling based on the Runge–Krarup theorem: a case study for the Moon

    Access Status
    Fulltext not available
    Authors
    Bucha, B.
    Hirt, C.
    Kuhn, Michael
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bucha, B. and Hirt, C. and Kuhn, M. 2018. Divergence-free spherical harmonic gravity field modelling based on the Runge–Krarup theorem: a case study for the Moon. Journal of Geodesy. 93 (4): pp 489–513.
    Source Title
    Journal of Geodesy
    DOI
    10.1007/s00190-018-1177-4
    ISSN
    0949-7714
    School
    School of Earth and Planetary Sciences (EPS)
    URI
    http://hdl.handle.net/20.500.11937/72104
    Collection
    • Curtin Research Publications
    Abstract

    Recent numerical studies on external gravity field modelling show that external spherical harmonic series may diverge near or on planetary surfaces. This paper investigates an alternative solution that is still based on external spherical harmonic series, but capable of avoiding the divergence effect. The approach relies on the Runge–Krarup theorem and the iterative downward continuation. In theory, Runge–Krarup-type solutions are able to approximate the true potential within the entire space external to the masses with an arbitrary e-accuracy, e> 0. Using gravity implied by the lunar topography, we show numerically that this technique avoids indeed the divergence effect, at least at the studied 5 arc-min resolution. In the context of the iterative scheme, we show that a function expressed as a truncated solid spherical harmonic expansion on a general star-shaped surface possesses an infinite surface spherical harmonic spectrum after it is mapped onto a sphere. We also study the convergence of the gradient approach, which is a technique for efficient grid-wise synthesis on irregular surfaces. We show that the resulting Taylor series may converge slowly when analytically upward continuing from points inside the masses. The continuation from the mass-free space should therefore be preferred. As an underlying topic of the paper, spherical harmonic coefficients from spectral gravity forward modelling and their Runge–Krarup counterpart are numerically studied. Regarding their different nature, we formulate some research topics that might contribute to a deeper understanding of the current methodologies used to develop combined high-degree spherical harmonic gravity models.

    Related items

    Showing items related by title, author, creator and subject.

    • Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography—A case study for the Moon
      Hirt, C.; Kuhn, Michael (2017)
      ©2017. American Geophysical Union. All Rights Reserved. Theoretically, spherical harmonic (SH) series expansions of the external gravitational potential are guaranteed to converge outside the Brillouin sphere enclosing ...
    • A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap2 data
      Hirt, Christian; Rexer, M.; Scheinert, M.; Pail, R.; Claessens, Sten; Holmes, S. (2015)
      The current high-degree global geopotential models EGM2008 and EIGEN-6C4 resolve gravity field structures to ~10 km spatial scales over most parts of the of Earth’s surface. However, a notable exception is continental ...
    • A surface spherical harmonic expansion of gravity anomalies on the ellipsoid
      Claessens, Sten; Hirt, C. (2015)
      A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.