Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Continuous-time model predictive control of a permanent magnet synchronous motor drive with disturbance decoupling

    Access Status
    Fulltext not available
    Authors
    Errouissi, R.
    Al-Durra, A.
    Muyeen, S.M.
    Leng, S.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Errouissi, R. and Al-Durra, A. and Muyeen, S. and Leng, S. 2017. Continuous-time model predictive control of a permanent magnet synchronous motor drive with disturbance decoupling. IET Electric Power Applications. 11 (5): pp. 697-706.
    Source Title
    IET Electric Power Applications
    DOI
    10.1049/iet-epa.2016.0499
    ISSN
    1751-8660
    School
    Department of Electrical and Computer Engineering
    URI
    http://hdl.handle.net/20.500.11937/58790
    Collection
    • Curtin Research Publications
    Abstract

    © The Institution of Engineering and Technology. The design and the experimental validation of a continuous-time model predictive control (CTMPC) for a permanent magnet synchronous motor (PMSM) drive with disturbance decoupling is discussed. The CTMPC approach uses Taylor series expansion to derive a closed-form solution to the problem of model predictive control even though the system behaviour is described by a non-linear model. This type of controller requires an exact knowledge of the system model to guarantee an accurate prediction of the system behaviour, while the PMSM is usually subjected to model uncertainties and external disturbances such as the load torque. Moreover, in the proposed approach, the predicted speed tracking error is directly used to determine the required voltage command without the need for a cascaded control scheme. As a result, the load torque is seen as unmatched disturbance which makes exact disturbance decoupling more challenging. To overcome such a problem, a non-linear disturbance observer is designed and combined with the CTMPC method to enhance the prediction accuracy under parameter variation and unknown load torque. The feasibility of the proposed approach is experimentally investigated, and good transient and steady-state performances are obtained.

    Related items

    Showing items related by title, author, creator and subject.

    • Developing completion criteria for rehabilitation areas on arid and semi-arid mine sites in Western Australia
      Brearley, Darren (2003)
      Continued expansion of the gold and nickel mining industry in Western Australia during recent years has led to disturbance of larger areas and the generation of increasing volumes of waste rock. Mine operators are obligated ...
    • Modeling and control of non-ideally mixed bioreactors
      Liew, Emily Wan Teng (2011)
      Mixing plays a substantial role in determining the overall performance of a bioreactor. Well mixing in bioreactor, especially for ethanolic fermentation process is important for the homogenization of miscible and immiscible ...
    • Optimisation of chlorine dosing for water disribution system using model-based predictive control
      Muslim, Abrar (2007)
      An ideal drinking water distribution system (DWDS) must supply safe drinking water with free chlorine residual (FCR) in the form of HOCI and OCIֿ at a required concentration level. Meanwhile the FCR is consumed in the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.