Show simple item record

dc.contributor.authorErrouissi, R.
dc.contributor.authorAl-Durra, A.
dc.contributor.authorMuyeen, S.M.
dc.contributor.authorLeng, S.
dc.date.accessioned2017-11-28T06:36:55Z
dc.date.available2017-11-28T06:36:55Z
dc.date.created2017-11-28T06:21:48Z
dc.date.issued2017
dc.identifier.citationErrouissi, R. and Al-Durra, A. and Muyeen, S. and Leng, S. 2017. Continuous-time model predictive control of a permanent magnet synchronous motor drive with disturbance decoupling. IET Electric Power Applications. 11 (5): pp. 697-706.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/58790
dc.identifier.doi10.1049/iet-epa.2016.0499
dc.description.abstract

© The Institution of Engineering and Technology. The design and the experimental validation of a continuous-time model predictive control (CTMPC) for a permanent magnet synchronous motor (PMSM) drive with disturbance decoupling is discussed. The CTMPC approach uses Taylor series expansion to derive a closed-form solution to the problem of model predictive control even though the system behaviour is described by a non-linear model. This type of controller requires an exact knowledge of the system model to guarantee an accurate prediction of the system behaviour, while the PMSM is usually subjected to model uncertainties and external disturbances such as the load torque. Moreover, in the proposed approach, the predicted speed tracking error is directly used to determine the required voltage command without the need for a cascaded control scheme. As a result, the load torque is seen as unmatched disturbance which makes exact disturbance decoupling more challenging. To overcome such a problem, a non-linear disturbance observer is designed and combined with the CTMPC method to enhance the prediction accuracy under parameter variation and unknown load torque. The feasibility of the proposed approach is experimentally investigated, and good transient and steady-state performances are obtained.

dc.titleContinuous-time model predictive control of a permanent magnet synchronous motor drive with disturbance decoupling
dc.typeJournal Article
dcterms.source.volume11
dcterms.source.number5
dcterms.source.startPage697
dcterms.source.endPage706
dcterms.source.issn1751-8660
dcterms.source.titleIET Electric Power Applications
curtin.departmentDepartment of Electrical and Computer Engineering
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record