Natural vibration of an aqueous pendant drop
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Interfacial dynamics of a pendant drop suspended from a needle support was studied via a new experimental method, without external excitation, to accurately quantify the impact of size and surface properties on the natural frequency. For drops ranging between 3.0 and 40.2 mm 3 , the natural frequency of vibration varied proportionally to the volume raised to the exponent -3/4, V -3/4 . A direct relationship between the frequency and the water drops was obtained f(Hz) ? S - 3/4 t c -1 , in which S is the dimensionless size parameter. Previous works performed employing external excitation suggested a direct impact of the supporting size, which might be explained by the acting force. The current experimental results do not follow this prediction, indicating insignificant influence of the support base on the recorded frequency. The results indicate a significant role of surface tension, which is taken into account by size factor S, on the vibration of the pendant drop.
Related items
Showing items related by title, author, creator and subject.
-
Ramachandran, A.; Tsigklifis, Konstantinos; Roy, A.; Leal, G. (2012)Using a numerical method based on the boundary-integral technique, we assess the impact of interfacial slip on the dynamics of deformation and breakup of a single drop subjected to a uniaxial extensional flow under ...
-
Ben Mahmud, Hisham (2012)The development of oil and gas fields in offshore deep waters (more than 1000 m) will become more common in the future. Inevitably, production systems will operate under multiphase flow conditions. The two–phase flow of ...
-
Fitterer, J.; Nelson, T.; Stockwell, Tim (2018)© 2018 by the authors. Multiple studies have associated the density of alcohol establishments with crime. What is not well understood is the influence of establishment patron capacity on the magnitude of crime in an area, ...