Show simple item record

dc.contributor.authorCalo, Victor
dc.contributor.authorDeng, Q.
dc.contributor.authorPuzyrev, Vladimir
dc.date.accessioned2018-01-30T07:57:40Z
dc.date.available2018-01-30T07:57:40Z
dc.date.created2018-01-30T05:59:17Z
dc.date.issued2017
dc.identifier.citationCalo, V. and Deng, Q. and Puzyrev, V. 2017. Quadrature blending for isogeometric analysis. Procedia Computer Science. 108: pp. 798-807.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/59878
dc.identifier.doi10.1016/j.procs.2017.05.143
dc.description.abstract

We use blended quadrature rules to reduce the phase error of isogeometric analysis discretizations. To explain the observed behavior and quantify the approximation errors, we use the generalized Pythagorean eigenvalue error theorem to account for quadrature errors on the resulting weak forms [28]. The proposed blended techniques improve the spectral accuracy of isogeometric analysis on uniform and non-uniform meshes for different polynomial orders and continuity of the basis functions. The convergence rate of the optimally blended schemes is increased by two orders with respect to the case when standard quadratures are applied. Our technique can be applied to arbitrary high-order isogeometric elements.

dc.publisherElsevier B V
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleQuadrature blending for isogeometric analysis
dc.typeJournal Article
dcterms.source.volume108
dcterms.source.startPage798
dcterms.source.endPage807
dcterms.source.titleProcedia Computer Science
curtin.departmentSchool of Earth and Planetary Sciences (EPS)
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/